메뉴 건너뛰기




Volumn 21, Issue 5, 2011, Pages 427-441

A lempel-ziv complexity-based neural network pruning algorithm

Author keywords

ANN construction; Artificial Neural Networks (ANNs); complexity of ANN; Lempel Ziv complexity; pruning

Indexed keywords

ARTIFICIAL NEURAL NETWORKS (ANNS); BENCH-MARK PROBLEMS; COMPLEXITY OF ANN; GENERALIZATION ABILITY; HIDDEN UNITS; LEMPEL ZIV COMPLEXITY; NETWORK PRUNING; NETWORK TRAINING; PRUNING; PRUNING ALGORITHMS; PRUNING METHODS; TIME SEQUENCES; TRAINING PROCESS;

EID: 80053344342     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065711002936     Document Type: Article
Times cited : (9)

References (64)
  • 1
    • 44349178047 scopus 로고    scopus 로고
    • Polarized signal classification by complex and quaternionic multi-layer perceptrons
    • DOI 10.1142/S0129065708001403, PII S0129065708001403
    • S. Buchholz and N. L. Bihan, Polarized signal classification by complex and quaternionic multilayer perceptrons, International Journal of Neural Systems 18(2) (2008) 75-85. (Pubitemid 351730107)
    • (2008) International Journal of Neural Systems , vol.18 , Issue.2 , pp. 75-85
    • Buchholz, S.1    Le Bihan, N.2
  • 2
    • 46649090920 scopus 로고    scopus 로고
    • Improvement of image classification using wavelet coefficients with structured-based neural network
    • W. Zou, Z. Chi and K. C. Lo, Improvement of image classification using wavelet coefficients with structured-based neural network, International Journal of Neural Systems 18(3) (2008) 195-205.
    • (2008) International Journal of Neural Systems , vol.18 , Issue.3 , pp. 195-205
    • Zou, W.1    Chi, Z.2    Lo, K.C.3
  • 3
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • X. H. Yu and G. A. Chen, Efficient backpropagation learning using optimal learning rate and momentum, Neural Networks 10(3) (1997) 517-527.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 517-527
    • Yu, X.H.1    Chen, G.A.2
  • 4
    • 34547155480 scopus 로고    scopus 로고
    • Dynamic memorization characteristics in neural networks with different neuronal dynamics
    • DOI 10.1142/S0129065707001032, PII S0129065707001032
    • N. Katada and H. Nishimura, Dynamic memorization characteristics in neural networks with different neuronal dynamics, International Journal of Neural Systems 17(3) (2007) 161-170. (Pubitemid 47117607)
    • (2007) International Journal of Neural Systems , vol.17 , Issue.3 , pp. 161-170
    • Katada, N.1    Nishimura, H.2
  • 5
    • 34547218849 scopus 로고    scopus 로고
    • A flexible annealing chaotic neural network to maximum clique problem
    • G. Yang, Z. Tang, Z. Zhang and Y. Zhu, A flexible annealing chaotic neural network to maximum clique problem, International Journal of Neural Systems 17(3) (2007) 171-181.
    • (2007) International Journal of Neural Systems , vol.17 , Issue.3 , pp. 171-181
    • Yang, G.1    Tang, Z.2    Zhang, Z.3    Zhu, Y.4
  • 6
    • 73949099341 scopus 로고    scopus 로고
    • Faster training using fusion of activation functions for feed forward neural networks
    • M. Assaduzzaman, M. Shahjahan and K. Murase, Faster training using fusion of activation functions for feed forward neural networks, International Journal of Neural System 19(6) (2009) 437-448.
    • (2009) International Journal of Neural System , vol.19 , Issue.6 , pp. 437-448
    • Assaduzzaman, M.1    Shahjahan, M.2    Murase, K.3
  • 7
    • 34547887247 scopus 로고    scopus 로고
    • Adaptive thresholds for neural networks with synaptic noise
    • DOI 10.1142/S012906570700110X, PII S012906570700110X
    • D. Bolle and R. Heylen, Adaptive thresholds for neural networks with synaptic noise, International Journal of Neural Systems 17(4) (2007) 241-252. (Pubitemid 47258346)
    • (2007) International Journal of Neural Systems , vol.17 , Issue.4 , pp. 241-252
    • Bolle, D.1    Heylen, R.2
  • 8
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • PII S1045922797027586
    • X. Yao and Y. Liu, A new evolutionary system for evolving artificial neural networks, IEEE Trans. Neural Networks 8(3) (1997) 694-713. (Pubitemid 127767812)
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 9
    • 1542435014 scopus 로고    scopus 로고
    • Entropy learning and relevance criteria for neural network pruning
    • G. S. Ng, A. Wahab and D. Shi, Entropy learning and relevance criteria for neural network pruning, International Journal of Neural Systems 13(5) (2003) 291-305.
    • (2003) International Journal of Neural Systems , vol.13 , Issue.5 , pp. 291-305
    • Ng, G.S.1    Wahab, A.2    Shi, D.3
  • 12
    • 33744924504 scopus 로고    scopus 로고
    • Small-world connectivity, motif composition, and complexity of fractal neuronal connections
    • DOI 10.1016/j.biosystems.2006.02.008, PII S0303264706000396
    • O. Sporns, Small world connectivity, motif composition, and complexity of fractal neuronal connections, Biosystems 85 (2006) 55-64. (Pubitemid 43850657)
    • (2006) BioSystems , vol.85 , Issue.1 , pp. 55-64
    • Sporns, O.1
  • 16
  • 20
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal brain surgeon, Adv. Neural Inform. Process Syst. 4 (1993).
    • (1993) Adv. Neural Inform. Process Syst. , vol.4
    • Hassibi, B.1    Stork, D.G.2
  • 21
    • 84945797434 scopus 로고
    • Dynamic node creation in back propagation networks
    • T. Ash, Dynamic node creation in back propagation networks, Connect. Sci. 1(4) (1989) 365-375.
    • (1989) Connect. Sci. , vol.1 , Issue.4 , pp. 365-375
    • Ash, T.1
  • 22
    • 0001958391 scopus 로고
    • Study of a growth algorithm for a feed forward network
    • J. P. Nadal, Study of a growth algorithm for a feed forward network, International Journalof Neural System 1(1) (1989) 55-59.
    • (1989) International Journalof Neural System , vol.1 , Issue.1 , pp. 55-59
    • Nadal, J.P.1
  • 23
    • 0028390208 scopus 로고
    • A constructive algorithm that converges for real-valued input patterns
    • N. Burgess, A constructive algorithm that converges for real-valued input patterns, International Journal of Neural System 5(1) (1994) 59-66.
    • (1994) International Journal of Neural System , vol.5 , Issue.1 , pp. 59-66
    • Burgess, N.1
  • 24
    • 0029185114 scopus 로고
    • Use of a quasi- Newton method in a feed forward neural network construction algorithm
    • R. Setiono and L. C. K. Hui, Use of a quasi- Newton method in a feed forward neural network construction algorithm, IEEE Trans. Neural Netw. 6(1) (1995) 273-277.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.1 , pp. 273-277
    • Setiono, R.1    Hui, L.C.K.2
  • 25
    • 0002551093 scopus 로고
    • Node splitting: A constructive algorithm for feed forward neural networks
    • M. W. Jones, Node splitting: A constructive algorithm for feed forward neural networks, Neural Comput. Appl. 1(1) (1993) 17-22.
    • (1993) Neural Comput. Appl. , vol.1 , Issue.1 , pp. 17-22
    • Jones, M.W.1
  • 26
    • 0032207884 scopus 로고    scopus 로고
    • CARVE - A Constructive Algorithm for Real-Valued Examples
    • PII S1045922798085178
    • S. Young and T. Downs, CARVE - A constructive algorithm for real-valued examples, IEEE Trans. Neural Netw. 9(6) (1998) 1180-1190. (Pubitemid 128742400)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1180-1190
    • Young, S.1    Downs, T.2
  • 28
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • R. Reed, Pruning algorithms - A survey, IEEE Trans. Neural Netw. 4(5) (1993) 740-747.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 29
    • 33644884686 scopus 로고    scopus 로고
    • A node pruning agorithm based on a fourier amplitude sensitivity test method
    • DOI 10.1109/TNN.2006.871707
    • P. Lauret, E. Fock and T. A. Mara, A node pruning algorithm based on a Fourier amplitude sensitivity test method, IEEE Trans. Neural Netw. 17(2) (2006) 273-293. (Pubitemid 43380055)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 273-293
    • Lauret, P.1    Fock, E.2    Mara, T.A.3
  • 30
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • P. Engelbrecht, A new pruning heuristic based on variance analysis of sensitivity information, IEEE Trans. Neural Netw. 12(6) (2001) 1386-1399.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, P.1
  • 31
    • 0025964567 scopus 로고
    • Backpropagation algorithm which varies the number of hidden units
    • Y. Hirose, K. Yamashita and S. Hijiya, Backpropagation algorithm which varies the number of hidden units, Neural Netw. 4(1) (1991) 61-66.
    • (1991) Neural Netw. , vol.4 , Issue.1 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 33
    • 0034811555 scopus 로고    scopus 로고
    • A new algorithm to design compact two-hidden-layer artificial neural networks
    • DOI 10.1016/S0893-6080(01)00075-2, PII S0893608001000752
    • M. M. Islam and K. Murase, A new algorithm to design compact two-hidden-layer artificial neural networks, Neural Netw. 14(9) (2001) 1265-1278. (Pubitemid 32910636)
    • (2001) Neural Networks , vol.14 , Issue.9 , pp. 1265-1278
    • Islam, Md.M.1    Murase, K.2
  • 34
    • 0042525842 scopus 로고    scopus 로고
    • Neural-network construction and selection in nonlinear modeling
    • I. Rivals and L. Personnaz, Neural-network construction and selection in nonlinear modeling, IEEE Trans. Neural Netw. 14(4) (2003) 804-819.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.4 , pp. 804-819
    • Rivals, I.1    Personnaz, L.2
  • 36
    • 0003380928 scopus 로고
    • Temporal processing with recurrent networks: An evolutionary approach
    • R. K. Belew and L. B. Booker, (eds)
    • J. Torreele, Temporal processing with recurrent networks: An evolutionary approach, 4th Int. Conf. Genetic Algorithms, R. K. Belew and L. B. Booker, (eds.), pp. 555-561, 1991.
    • (1991) 4th Int. Conf. Genetic Algorithms , pp. 555-561
    • Torreele, J.1
  • 37
    • 0029548090 scopus 로고
    • Evolving recurrent neural networks with non-binary encoding
    • Part 2 (of 2)
    • M. Mandischer, Evolving recurrent neural networks with non-binary encoding, IEEE Int. Conf. Evol. Comput. Part 2 (of 2) (1995) 584-589.
    • (1995) IEEE Int. Conf. Evol. Comput , pp. 584-589
    • Mandischer, M.1
  • 38
    • 77951561691 scopus 로고    scopus 로고
    • A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems
    • H. Duan, C. F. Xu and Z. H. Xing, A hybrid artificial bee colony optimization and quantum evolutionary algorithm for continuous optimization problems, International Journal of Neural Systems 20(1) (2010) 39-50.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.1 , pp. 39-50
    • Duan, H.1    Xu, C.F.2    Xing, Z.H.3
  • 39
    • 0025477595 scopus 로고
    • Genetic algorithms and neural networks: Optimizing connections and connectivity
    • D. Whitley, T. Starkweather and C. Bogart, Genetic algorithms and neural networks: Optimizing connections and connectivity, Parallel Comput. 14(3) (1990) 347-361.
    • (1990) Parallel Comput. , vol.14 , Issue.3 , pp. 347-361
    • Whitley, D.1    Starkweather, T.2    Bogart, C.3
  • 40
    • 0005021990 scopus 로고
    • Optimizing small neural networks using a distributed genetic algorithm
    • Hillsdale, NJ: Lawrence Erlbaum
    • D. Whitley and T. Starkweather, Optimizing small neural networks using a distributed genetic algorithm, Int. Joint Conf. Neural Netw. Hillsdale, NJ: Lawrence Erlbaum, Vol. 1, pp. 206-209 1990.
    • (1990) Int. Joint Conf. Neural Netw , vol.1 , pp. 206-209
    • Whitley, D.1    Starkweather, T.2
  • 41
    • 0000680827 scopus 로고
    • A preliminary study on designing artificial neural networks using co-evolution
    • Singapore
    • X. Yao and Y. Shi, A preliminary study on designing artificial neural networks using co-evolution, IEEE Singapore Int. Conf. Intell.Control Instrum., Singapore, 149-154 (1995).
    • (1995) IEEE Singapore Int. Conf. Intell.Control Instrum. , pp. 149-154
    • Yao, X.1    Shi, Y.2
  • 42
    • 0016880887 scopus 로고
    • On the complexity of finite sequences
    • Lempel A and Ziv J, On the complexity of finite sequences, IEEE Trans Inform Theory 22(1) (1976) 75-81.
    • (1976) IEEE Trans Inform Theory , vol.22 , Issue.1 , pp. 75-81
    • Lempel, A.1    Ziv, J.2
  • 43
    • 80053381843 scopus 로고
    • Optimal brain surgeon: Extensions and performance comparisons
    • San Francisco
    • B. Hassibi, D. G. Stork and G. Wolff, Optimal brain surgeon: Extensions and performance comparisons, IEEE Int. Conf. Neural Network, San Francisco (1993).
    • (1993) IEEE Int. Conf. Neural Network
    • Hassibi, B.1    Stork, D.G.2    Wolff, G.3
  • 44
    • 55849084755 scopus 로고    scopus 로고
    • A node pruning algorithm based on optimal brain surgeon for feed forward neural networks
    • China
    • J. Xu and D. W. C. Ho, A node pruning algorithm based on optimal brain surgeon for feed forward neural networks, 3rd Int. Symposium on Neural Network, China (2006).
    • (2006) 3rd Int. Symposium on Neural Network
    • Xu, J.1    Ho, D.W.C.2
  • 47
    • 84899002752 scopus 로고    scopus 로고
    • Fast network pruning and feature extraction using the unit-OBS algorithm
    • A. Stahlberger and M. Riedmiller, Fast network pruning and feature extraction using the unit-OBS algorithm, Adv. Neural Inform. Process. Syst. 10 (1997).
    • (1997) Adv. Neural Inform. Process. Syst. , vol.10
    • Stahlberger, A.1    Riedmiller, M.2
  • 48
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • M. C. Mozer and P. Smolensky, Skeletonization: A technique for trimming the fat from a network via relevance assessment, Adv. Neural Inform. Process. Syst. 1 (1989).
    • (1989) Adv. Neural Inform. Process. Syst. , vol.1
    • Mozer, M.C.1    Smolensky, P.2
  • 49
    • 0025447562 scopus 로고
    • A simple procedure for pruning backpropagation trained neural networks
    • E. D. Karnin, A simple procedure for pruning backpropagation trained neural networks, IEEE Trans. Neural Networks 1(2) (1990).
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 2
    • Karnin, E.D.1
  • 50
    • 55849150657 scopus 로고    scopus 로고
    • A comparative analysis of simplification and complexification in the evolution of neural network topologies
    • D. James and P. Tucker, A comparative analysis of simplification and complexification in the evolution of neural network topologies, Proc. of the Genet. And Evol. Conf. (2004).
    • (2004) Proc. of the Genet. and Evol. Conf.
    • James, D.1    Tucker, P.2
  • 51
    • 0030633575 scopus 로고    scopus 로고
    • A penalty function approach for pruning feedforward neural networks
    • R. Setiono, A penalty function approach for pruning feedforward neural networks, Neural Comp. 9(1) (1997).
    • (1997) Neural Comp. , vol.9 , pp. 1
    • Setiono, R.1
  • 52
    • 33745937122 scopus 로고    scopus 로고
    • Effective neural network pruning using cross validation
    • Montreal, Canada
    • T. Q. Huynh and R. Setiono, Effective neural network pruning using cross validation, Int. joint Conf. Neural Networks, Montreal, Canada (2005).
    • (2005) Int. Joint Conf. Neural Networks
    • Huynh, T.Q.1    Setiono, R.2
  • 54
    • 55849084307 scopus 로고    scopus 로고
    • Pruning artificial neural networks using neural complexity measures
    • T. D. Jorgensen and B. P. Haynes, Pruning artificial neural networks using neural complexity measures, International Journal of Neural Systems 18(5) (2008) 389-403.
    • (2008) International Journal of Neural Systems , vol.18 , Issue.5 , pp. 389-403
    • Jorgensen, T.D.1    Haynes, B.P.2
  • 56
    • 0034065825 scopus 로고    scopus 로고
    • Information complexity of neural networks
    • DOI 10.1016/S0893-6080(00)00015-0, PII S0893608000000150
    • M. A. Kon and L. Plaskota, Information complexity of neural networks, Neural Networks 13 (2000) 365-375. (Pubitemid 30252012)
    • (2000) Neural Networks , vol.13 , Issue.3 , pp. 365-375
    • Kon, M.A.1    Plaskota, L.2
  • 58
    • 0000473247 scopus 로고
    • A back-propagation algorithm with optimal use of hidden units
    • Y. Chauvin, A back-propagation algorithm with optimal use of hidden units, Adv. Neural Inform. Process. Syst. 1 (1989).
    • (1989) Adv. Neural Inform. Process. Syst. , vol.1
    • Chauvin, Y.1
  • 59
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weights-Sharing
    • S. J. Nowlan and G. E. Hinton, Simplifying neural networks by soft weights-Sharing, Neural Compute. 4 (1992).
    • (1992) Neural Compute. , vol.4
    • Nowlan, S.J.1    Hinton, G.E.2
  • 60
    • 80053379717 scopus 로고    scopus 로고
    • Pruning neural networks with distribution estimation algorithms
    • E. C. Paz, Pruning neural networks with distribution estimation algorithms, The Genet. and Evol. Conf. (2003).
    • (2003) The Genet. and Evol. Conf.
    • Paz, E.C.1
  • 61
    • 0001420440 scopus 로고
    • The evolution of connectivity: Pruning neural networks using genetic algorithms
    • D. Whitley and C. Bogart, The evolution of connectivity: Pruning neural networks using genetic algorithms, Int. Joint Conf. Neural Networks (1990) 134-136.
    • (1990) Int. Joint Conf. Neural Networks , pp. 134-136
    • Whitley, D.1    Bogart, C.2
  • 63
    • 35248855028 scopus 로고
    • Using GA to train NN using weight sharing, weight pruning and unit pruning
    • Aarhus University, Computer Science Department, Aarhus, Denmark
    • M. Schmidt and T. Stidsen, Using GA to train NN using weight sharing, weight pruning and unit pruning, Technical Report, Aarhus University, Computer Science Department, Aarhus, Denmark (1995).
    • (1995) Technical Report
    • Schmidt, M.1    Stidsen, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.