메뉴 건너뛰기




Volumn 74, Issue 18, 2011, Pages 3931-3940

From local neural networks to granular neural networks: A study in information granulation

Author keywords

Granular neural networks; Information granularity; Information granules; Intervals

Indexed keywords

DATA SETS; INFORMATION GRANULARITY; INFORMATION GRANULATION; INFORMATION GRANULES; INTERVALS; MACHINE-LEARNING; PERFORMANCE INDICES; QUALITY OF INFORMATION;

EID: 80053314740     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.08.009     Document Type: Article
Times cited : (10)

References (22)
  • 1
  • 2
    • 70350272885 scopus 로고    scopus 로고
    • Granular neural networks and their development through context based clustering and adjustable dimensionality of receptive fields
    • Park H., Pedrycz W., Oh S. Granular neural networks and their development through context based clustering and adjustable dimensionality of receptive fields. IEEE Trans. Neural Networks 2009, 20:1604-1616.
    • (2009) IEEE Trans. Neural Networks , vol.20 , pp. 1604-1616
    • Park, H.1    Pedrycz, W.2    Oh, S.3
  • 3
    • 42549168022 scopus 로고    scopus 로고
    • Granular neural networks with evolutionary interval learning
    • Zhang Y.Q., Jin B., Tang Y. Granular neural networks with evolutionary interval learning. IEEE Trans. Fuzzy Syst. 2008, 16:309-319.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 309-319
    • Zhang, Y.Q.1    Jin, B.2    Tang, Y.3
  • 4
    • 0034186991 scopus 로고    scopus 로고
    • Granular neural networks for numerical-linguistic data fusion and knowledge discovery
    • Zhang Y.Q., Fraser M.D., Gagliano R.A., Kandel A. Granular neural networks for numerical-linguistic data fusion and knowledge discovery. IEEE Trans. Neural Networks 2000, 11:658-667.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 658-667
    • Zhang, Y.Q.1    Fraser, M.D.2    Gagliano, R.A.3    Kandel, A.4
  • 5
    • 55949110248 scopus 로고    scopus 로고
    • A granular-oriented development of functional radial basis function neural networks
    • Pedrycz W., Park H.S., Oh S.K. A granular-oriented development of functional radial basis function neural networks. Neurocomputing 2008, 72:420-435.
    • (2008) Neurocomputing , vol.72 , pp. 420-435
    • Pedrycz, W.1    Park, H.S.2    Oh, S.K.3
  • 6
    • 79958171187 scopus 로고    scopus 로고
    • A neural-fuzzy modeling framework based on granular computing: concepts and applications
    • Panoutsos G., Mahfouf M. A neural-fuzzy modeling framework based on granular computing: concepts and applications. Fuzzy Sets Syst. 2010, 161:2808-2830.
    • (2010) Fuzzy Sets Syst. , vol.161 , pp. 2808-2830
    • Panoutsos, G.1    Mahfouf, M.2
  • 7
    • 33947271780 scopus 로고    scopus 로고
    • Logic-based fuzzy neurocomputing with unineurons
    • Pedrycz W. Logic-based fuzzy neurocomputing with unineurons. IEEE Trans. Fuzzy Syst. 2006, 14:860-873.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , pp. 860-873
    • Pedrycz, W.1
  • 8
    • 78049276362 scopus 로고    scopus 로고
    • PSO-based A Weighting method for linear combination of neural networks
    • Nabavi-Kerizi S.H., Abadi M., Kabir E., PSO-based A weighting method for linear combination of neural networks. Comput. Electr. Eng. 2010, 36:886-894.
    • (2010) Comput. Electr. Eng. , vol.36 , pp. 886-894
    • Nabavi-Kerizi, S.H.1    Abadi, M.2    Kabir, E.3
  • 9
    • 70350726190 scopus 로고    scopus 로고
    • Progressive interactive training: a sequential neural network ensemble learning method
    • Akhand M.A.H., MonirulIslam Md., Murase K. Progressive interactive training: a sequential neural network ensemble learning method. Neurocomputing 2009, 73:260-273.
    • (2009) Neurocomputing , vol.73 , pp. 260-273
    • Akhand, M.A.H.1    MonirulIslam, M.2    Murase, K.3
  • 10
    • 60249097051 scopus 로고    scopus 로고
    • Effective diagnosis of heart disease through neural networks ensembles
    • Das Resul, Turkoglu Ibrahim, Sengur Abdulkadir Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 2009, 36:7675-7680.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7675-7680
    • Das, R.1    Turkoglu, I.2    Sengur, A.3
  • 11
    • 58249094346 scopus 로고    scopus 로고
    • Exploring new possibilities for case-based explanation of artificial neural network ensembles
    • Green Michael, Ekelund Ulf, Edenbrandt Lars, Björk Jonas, Forberg Jakob Lundager, Ohlsson Mattias Exploring new possibilities for case-based explanation of artificial neural network ensembles. Neural Networks 2009, 22:75-81.
    • (2009) Neural Networks , vol.22 , pp. 75-81
    • Green, M.1    Ekelund, U.2    Edenbrandt, L.3    Björk, J.4    Forberg, J.L.5    Ohlsson, M.6
  • 12
    • 40649122254 scopus 로고    scopus 로고
    • Evolutionary ensemble of diverse artificial neural networks
    • Kim Kyung-Joong, Cho Sung-Bae Evolutionary ensemble of diverse artificial neural networks. Neurocomputing 2008, 71:1604-1618.
    • (2008) Neurocomputing , vol.71 , pp. 1604-1618
    • Kim, K.-J.1    Cho, S.-B.2
  • 13
    • 14544297375 scopus 로고    scopus 로고
    • Neural network ensembles: evaluation of aggregation algorithms
    • Granitto P.M., Verdes P.F., Ceccatto H.A. Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 2005, 163:139-162.
    • (2005) Artif. Intell. , vol.163 , pp. 139-162
    • Granitto, P.M.1    Verdes, P.F.2    Ceccatto, H.A.3
  • 14
    • 0002263693 scopus 로고
    • Fuzzy sets and information granularity
    • Amsterdam, North Holland, M.M. Gupta, R.K. Ragade, R.R. Yager (Eds.)
    • Zadeh L.A. Fuzzy sets and information granularity. Advances in Fuzzy Set Theory and Applications 1979, 3-18. Amsterdam, North Holland. M.M. Gupta, R.K. Ragade, R.R. Yager (Eds.).
    • (1979) Advances in Fuzzy Set Theory and Applications , pp. 3-18
    • Zadeh, L.A.1
  • 15
    • 0020843799 scopus 로고
    • The role of fuzzy logic in the management of uncertainty in expert systems
    • Zadeh L.A. The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets Syst. 1983, 11:199-227.
    • (1983) Fuzzy Sets Syst. , vol.11 , pp. 199-227
    • Zadeh, L.A.1
  • 16
    • 70350714258 scopus 로고    scopus 로고
    • Logic-oriented neural networks for fuzzy neurocomputing
    • Pedrycz W., Aliev R.A. Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 2009, 73:10-23.
    • (2009) Neurocomputing , vol.73 , pp. 10-23
    • Pedrycz, W.1    Aliev, R.A.2
  • 17
    • 77952485893 scopus 로고    scopus 로고
    • A fast multi-output RBF neural network construction method
    • Du D., Li K., Fei M. A fast multi-output RBF neural network construction method. Neurocomputing 2010, 73:2196-2202.
    • (2010) Neurocomputing , vol.73 , pp. 2196-2202
    • Du, D.1    Li, K.2    Fei, M.3
  • 18
    • 0036131648 scopus 로고    scopus 로고
    • Searching for a solution to the automatic RBF network design problem
    • A V.D. Searching for a solution to the automatic RBF network design problem. Neurocomputing 2002, 42:147-170.
    • (2002) Neurocomputing , vol.42 , pp. 147-170
    • A, V.D.1
  • 19
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5:115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 21
    • 0025448521 scopus 로고
    • Strength of weak learnability
    • Schapire R. Strength of weak learnability. Mach. Learning 1990, 5:197-222.
    • (1990) Mach. Learning , vol.5 , pp. 197-222
    • Schapire, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.