-
2
-
-
70350272885
-
Granular neural networks and their development through context based clustering and adjustable dimensionality of receptive fields
-
Park H., Pedrycz W., Oh S. Granular neural networks and their development through context based clustering and adjustable dimensionality of receptive fields. IEEE Trans. Neural Networks 2009, 20:1604-1616.
-
(2009)
IEEE Trans. Neural Networks
, vol.20
, pp. 1604-1616
-
-
Park, H.1
Pedrycz, W.2
Oh, S.3
-
3
-
-
42549168022
-
Granular neural networks with evolutionary interval learning
-
Zhang Y.Q., Jin B., Tang Y. Granular neural networks with evolutionary interval learning. IEEE Trans. Fuzzy Syst. 2008, 16:309-319.
-
(2008)
IEEE Trans. Fuzzy Syst.
, vol.16
, pp. 309-319
-
-
Zhang, Y.Q.1
Jin, B.2
Tang, Y.3
-
4
-
-
0034186991
-
Granular neural networks for numerical-linguistic data fusion and knowledge discovery
-
Zhang Y.Q., Fraser M.D., Gagliano R.A., Kandel A. Granular neural networks for numerical-linguistic data fusion and knowledge discovery. IEEE Trans. Neural Networks 2000, 11:658-667.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, pp. 658-667
-
-
Zhang, Y.Q.1
Fraser, M.D.2
Gagliano, R.A.3
Kandel, A.4
-
5
-
-
55949110248
-
A granular-oriented development of functional radial basis function neural networks
-
Pedrycz W., Park H.S., Oh S.K. A granular-oriented development of functional radial basis function neural networks. Neurocomputing 2008, 72:420-435.
-
(2008)
Neurocomputing
, vol.72
, pp. 420-435
-
-
Pedrycz, W.1
Park, H.S.2
Oh, S.K.3
-
6
-
-
79958171187
-
A neural-fuzzy modeling framework based on granular computing: concepts and applications
-
Panoutsos G., Mahfouf M. A neural-fuzzy modeling framework based on granular computing: concepts and applications. Fuzzy Sets Syst. 2010, 161:2808-2830.
-
(2010)
Fuzzy Sets Syst.
, vol.161
, pp. 2808-2830
-
-
Panoutsos, G.1
Mahfouf, M.2
-
7
-
-
33947271780
-
Logic-based fuzzy neurocomputing with unineurons
-
Pedrycz W. Logic-based fuzzy neurocomputing with unineurons. IEEE Trans. Fuzzy Syst. 2006, 14:860-873.
-
(2006)
IEEE Trans. Fuzzy Syst.
, vol.14
, pp. 860-873
-
-
Pedrycz, W.1
-
8
-
-
78049276362
-
PSO-based A Weighting method for linear combination of neural networks
-
Nabavi-Kerizi S.H., Abadi M., Kabir E., PSO-based A weighting method for linear combination of neural networks. Comput. Electr. Eng. 2010, 36:886-894.
-
(2010)
Comput. Electr. Eng.
, vol.36
, pp. 886-894
-
-
Nabavi-Kerizi, S.H.1
Abadi, M.2
Kabir, E.3
-
9
-
-
70350726190
-
Progressive interactive training: a sequential neural network ensemble learning method
-
Akhand M.A.H., MonirulIslam Md., Murase K. Progressive interactive training: a sequential neural network ensemble learning method. Neurocomputing 2009, 73:260-273.
-
(2009)
Neurocomputing
, vol.73
, pp. 260-273
-
-
Akhand, M.A.H.1
MonirulIslam, M.2
Murase, K.3
-
10
-
-
60249097051
-
Effective diagnosis of heart disease through neural networks ensembles
-
Das Resul, Turkoglu Ibrahim, Sengur Abdulkadir Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 2009, 36:7675-7680.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 7675-7680
-
-
Das, R.1
Turkoglu, I.2
Sengur, A.3
-
11
-
-
58249094346
-
Exploring new possibilities for case-based explanation of artificial neural network ensembles
-
Green Michael, Ekelund Ulf, Edenbrandt Lars, Björk Jonas, Forberg Jakob Lundager, Ohlsson Mattias Exploring new possibilities for case-based explanation of artificial neural network ensembles. Neural Networks 2009, 22:75-81.
-
(2009)
Neural Networks
, vol.22
, pp. 75-81
-
-
Green, M.1
Ekelund, U.2
Edenbrandt, L.3
Björk, J.4
Forberg, J.L.5
Ohlsson, M.6
-
12
-
-
40649122254
-
Evolutionary ensemble of diverse artificial neural networks
-
Kim Kyung-Joong, Cho Sung-Bae Evolutionary ensemble of diverse artificial neural networks. Neurocomputing 2008, 71:1604-1618.
-
(2008)
Neurocomputing
, vol.71
, pp. 1604-1618
-
-
Kim, K.-J.1
Cho, S.-B.2
-
13
-
-
14544297375
-
Neural network ensembles: evaluation of aggregation algorithms
-
Granitto P.M., Verdes P.F., Ceccatto H.A. Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 2005, 163:139-162.
-
(2005)
Artif. Intell.
, vol.163
, pp. 139-162
-
-
Granitto, P.M.1
Verdes, P.F.2
Ceccatto, H.A.3
-
14
-
-
0002263693
-
Fuzzy sets and information granularity
-
Amsterdam, North Holland, M.M. Gupta, R.K. Ragade, R.R. Yager (Eds.)
-
Zadeh L.A. Fuzzy sets and information granularity. Advances in Fuzzy Set Theory and Applications 1979, 3-18. Amsterdam, North Holland. M.M. Gupta, R.K. Ragade, R.R. Yager (Eds.).
-
(1979)
Advances in Fuzzy Set Theory and Applications
, pp. 3-18
-
-
Zadeh, L.A.1
-
15
-
-
0020843799
-
The role of fuzzy logic in the management of uncertainty in expert systems
-
Zadeh L.A. The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets Syst. 1983, 11:199-227.
-
(1983)
Fuzzy Sets Syst.
, vol.11
, pp. 199-227
-
-
Zadeh, L.A.1
-
16
-
-
70350714258
-
Logic-oriented neural networks for fuzzy neurocomputing
-
Pedrycz W., Aliev R.A. Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 2009, 73:10-23.
-
(2009)
Neurocomputing
, vol.73
, pp. 10-23
-
-
Pedrycz, W.1
Aliev, R.A.2
-
17
-
-
77952485893
-
A fast multi-output RBF neural network construction method
-
Du D., Li K., Fei M. A fast multi-output RBF neural network construction method. Neurocomputing 2010, 73:2196-2202.
-
(2010)
Neurocomputing
, vol.73
, pp. 2196-2202
-
-
Du, D.1
Li, K.2
Fei, M.3
-
18
-
-
0036131648
-
Searching for a solution to the automatic RBF network design problem
-
A V.D. Searching for a solution to the automatic RBF network design problem. Neurocomputing 2002, 42:147-170.
-
(2002)
Neurocomputing
, vol.42
, pp. 147-170
-
-
A, V.D.1
-
19
-
-
51249194645
-
A logical calculus of the ideas immanent in nervous activity
-
McCulloch W., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5:115-133.
-
(1943)
Bull. Math. Biophys.
, vol.5
, pp. 115-133
-
-
McCulloch, W.1
Pitts, W.2
-
21
-
-
0025448521
-
Strength of weak learnability
-
Schapire R. Strength of weak learnability. Mach. Learning 1990, 5:197-222.
-
(1990)
Mach. Learning
, vol.5
, pp. 197-222
-
-
Schapire, R.1
|