메뉴 건너뛰기




Volumn 22, Issue 1, 2009, Pages 75-81

Exploring new possibilities for case-based explanation of artificial neural network ensembles

Author keywords

Acute coronary syndrome; Case based explanation; Neural network ensembles; Sensitivity analysis

Indexed keywords

ACUTE CORONARY SYNDROME; ARTIFICIAL DATUMS; ARTIFICIAL NEURAL NETWORK ENSEMBLES; ARTIFICIAL NEURAL NETWORKS; CASE-BASED EXPLANATION; CLINICAL DECISION SUPPORT SYSTEMS; DATA SETS; DECISION BOUNDARIES; EMERGENCY DEPARTMENTS; INTERPRETABILITY; LUND UNIVERSITIES; NEURAL NETWORK ENSEMBLES; SET OF RULES;

EID: 58249094346     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2008.09.014     Document Type: Article
Times cited : (25)

References (19)
  • 1
    • 33748362861 scopus 로고    scopus 로고
    • A simple statistical model for prediction of acute coronary syndrome in chest pain patients in the emergency department
    • Björk J., Forberg J.L., Ohlsson M., Edenbrandt L., Öhlin H., and Ekelund U. A simple statistical model for prediction of acute coronary syndrome in chest pain patients in the emergency department. BMC Medical Informatics and Decision Making 6 (2006) 28. http://dx.doi.org/10.1186/1472-6947-6-28
    • (2006) BMC Medical Informatics and Decision Making , vol.6 , pp. 28
    • Björk, J.1    Forberg, J.L.2    Ohlsson, M.3    Edenbrandt, L.4    Öhlin, H.5    Ekelund, U.6
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 58249087649 scopus 로고    scopus 로고
    • Caruana, R. (2000). Case-based explanation for artificial neural nets. In H. Malmgren, M. Borga, L. Niklasson (Eds.), Proceedings of artificial neural networks in medicine and biology conference (pp. 303-308)
    • Caruana, R. (2000). Case-based explanation for artificial neural nets. In H. Malmgren, M. Borga, L. Niklasson (Eds.), Proceedings of artificial neural networks in medicine and biology conference (pp. 303-308)
  • 4
    • 33644921465 scopus 로고    scopus 로고
    • Orthogonal search-based rule extraction (OSRE) for trained neural networks: A practical and efficient approach
    • Etchells T.A., and Lisboa P.J.G. Orthogonal search-based rule extraction (OSRE) for trained neural networks: A practical and efficient approach. IEEE Transactions on Neural Networks 17 2 (2006) 374-384
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 374-384
    • Etchells, T.A.1    Lisboa, P.J.G.2
  • 5
    • 57349180665 scopus 로고    scopus 로고
    • Forberg, J., Björk, J., Green, M., Ohlsson, M., Edenbrandt, L., & Öhlin, H. et al. (2008). In search of the best method to predict acute coronary syndrome using only the ECG from the emergency department. Journal of Electrocardiology, in press (doi:10.1016/j.jelectrocard.2008.07.010)
    • Forberg, J., Björk, J., Green, M., Ohlsson, M., Edenbrandt, L., & Öhlin, H. et al. (2008). In search of the best method to predict acute coronary syndrome using only the ECG from the emergency department. Journal of Electrocardiology, in press (doi:10.1016/j.jelectrocard.2008.07.010)
  • 6
    • 33750936249 scopus 로고    scopus 로고
    • Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room
    • Green M., Björk J., Forberg J., Ekelund U., Edenbrandt L., and Ohlsson M. Comparison between neural networks and multiple logistic regression to predict acute coronary syndrome in the emergency room. Artificial Intelligence in Medicine 38 3 (2006) 305-318. http://dx.doi.org/10.1016/j.artmed.2006.07.006
    • (2006) Artificial Intelligence in Medicine , vol.38 , Issue.3 , pp. 305-318
    • Green, M.1    Björk, J.2    Forberg, J.3    Ekelund, U.4    Edenbrandt, L.5    Ohlsson, M.6
  • 8
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 1 (1982) 29-36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 9
    • 4444375050 scopus 로고    scopus 로고
    • Detecting acute myocardial infarction in the 12-lead ECG using hermite expansions and neural networks
    • Haraldsson H., Edenbrandt L., and Ohlsson M. Detecting acute myocardial infarction in the 12-lead ECG using hermite expansions and neural networks. Artificial Intelligence in Medicine 32 (2004) 127-136
    • (2004) Artificial Intelligence in Medicine , vol.32 , pp. 127-136
    • Haraldsson, H.1    Edenbrandt, L.2    Ohlsson, M.3
  • 10
    • 31144446354 scopus 로고    scopus 로고
    • Identification of patients with evolving coronary syndromes by using statistical models with data from the time of presentation
    • Kennedy R., and Harrison R. Identification of patients with evolving coronary syndromes by using statistical models with data from the time of presentation. Heart 92 (2006) 183-189
    • (2006) Heart , vol.92 , pp. 183-189
    • Kennedy, R.1    Harrison, R.2
  • 12
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • Lisboa P.J.G. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks 15 1 (2002) 11-39
    • (2002) Neural Networks , vol.15 , Issue.1 , pp. 11-39
    • Lisboa, P.J.G.1
  • 13
    • 0344961870 scopus 로고    scopus 로고
    • Numeric sensitivity analysis applied to feedforward neural networks
    • Montao J.J., and Palmer A. Numeric sensitivity analysis applied to feedforward neural networks. Neural Computing & Applications 12 2 (2003) 119-125
    • (2003) Neural Computing & Applications , vol.12 , Issue.2 , pp. 119-125
    • Montao, J.J.1    Palmer, A.2
  • 14
    • 33845679519 scopus 로고    scopus 로고
    • Neural network explanation using inversion
    • Saad E.W., and Wunsch D.C. Neural network explanation using inversion. Neural Networks 20 1 (2007) 78-93. http://dx.doi.org/10.1016/j.neunet.2006.07.005
    • (2007) Neural Networks , vol.20 , Issue.1 , pp. 78-93
    • Saad, E.W.1    Wunsch, D.C.2
  • 15
    • 0032281368 scopus 로고    scopus 로고
    • Establishing impacts of the inputs in a feedforward neural network
    • Tchaban T., Taylor M.J., and Griffin J.P. Establishing impacts of the inputs in a feedforward neural network. Neural Computing & Applications 7 4 (1998) 309-317
    • (1998) Neural Computing & Applications , vol.7 , Issue.4 , pp. 309-317
    • Tchaban, T.1    Taylor, M.J.2    Griffin, J.P.3
  • 16
    • 58249087067 scopus 로고    scopus 로고
    • Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., & Cheng, J. et al. (1991). The monk's problems a performance comparison of different learning algorithms
    • Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., & Cheng, J. et al. (1991). The monk's problems a performance comparison of different learning algorithms
  • 17
    • 0042669840 scopus 로고    scopus 로고
    • Explaining the output of ensembles in medical decision support on a case by case basis
    • Wall R., Cunningham P., Walsh P., and Byrne S. Explaining the output of ensembles in medical decision support on a case by case basis. Artificial intelligence in medicine 28 (2003) 191-206. http://linkinghub.elsevier.com/retrieve/pii/S0933365703000563
    • (2003) Artificial intelligence in medicine , vol.28 , pp. 191-206
    • Wall, R.1    Cunningham, P.2    Walsh, P.3    Byrne, S.4
  • 18
    • 0034336503 scopus 로고    scopus 로고
    • Assessing the impact of input features in a feedforward neural network
    • Wang W., Jones P., and Partridge D. Assessing the impact of input features in a feedforward neural network. Neural Computing & Applications 9 (2004) 101-112
    • (2004) Neural Computing & Applications , vol.9 , pp. 101-112
    • Wang, W.1    Jones, P.2    Partridge, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.