-
1
-
-
0030372023
-
On combining artificial neural nets
-
Sharkey A.J.C. On combining artificial neural nets. Connection Science 8 (1996) 299-314
-
(1996)
Connection Science
, vol.8
, pp. 299-314
-
-
Sharkey, A.J.C.1
-
3
-
-
10444221886
-
Diversity creation methods: a survey and categorization
-
Brown G., Wyatt J., Harris R., and Yao X. Diversity creation methods: a survey and categorization. Information Fusion 6 (2005) 99-111
-
(2005)
Information Fusion
, vol.6
, pp. 99-111
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Morgan Kaufmann, Los Altos, CA
-
Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of the 13th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1996, pp. 148-156.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
6
-
-
0030370417
-
Bagging, boosting, and C4.5
-
AAAI Press/MIT Press, Menlo Park
-
J.R. Quinlan, Bagging, boosting, and C4.5, in: Proceedings of the 13th National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference, AAAI Press/MIT Press, Menlo Park, 1996, pp. 725-730.
-
(1996)
Proceedings of the 13th National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference
, pp. 725-730
-
-
Quinlan, J.R.1
-
8
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting, and variants
-
Bauter E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 (1999) 105-142
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauter, E.1
Kohavi, R.2
-
10
-
-
10444241776
-
-
Ph.D. Thesis, School of Computer Science, University of Birmingham, UK
-
G. Brown, Diversity in neural network ensembles, Ph.D. Thesis, School of Computer Science, University of Birmingham, UK, 2003.
-
(2003)
Diversity in neural network ensembles
-
-
Brown, G.1
-
11
-
-
0033280266
-
Simultaneous training of negatively correlated neural networks in an ensemble
-
Liu Y., and Yao X. Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29 6 (1999) 716-725
-
(1999)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.29
, Issue.6
, pp. 716-725
-
-
Liu, Y.1
Yao, X.2
-
12
-
-
0033485370
-
Ensemble learning via negative correlation
-
Liu Y., and Yao X. Ensemble learning via negative correlation. Neural Networks 12 (1999) 1399-1404
-
(1999)
Neural Networks
, vol.12
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
13
-
-
10444259853
-
Creating diversity in ensembles using artificial data
-
Melville P., and Mooney R.J. Creating diversity in ensembles using artificial data. Information Fusion 6 (2005) 99-111
-
(2005)
Information Fusion
, vol.6
, pp. 99-111
-
-
Melville, P.1
Mooney, R.J.2
-
15
-
-
17644410562
-
A review on the ant colony optimization metaheuristic: basis, models and new trends
-
Cordon O., Herrera F., and Stützle T. A review on the ant colony optimization metaheuristic: basis, models and new trends. Mathware and Soft Computing 9 (2002) 141-175
-
(2002)
Mathware and Soft Computing
, vol.9
, pp. 141-175
-
-
Cordon, O.1
Herrera, F.2
Stützle, T.3
-
16
-
-
0004114283
-
Proben1-a set of benchmarks and benching rules for neural network training algorithms
-
Technical Report 21/94, Fakultat fur Informatik, University of Karlsruhe, Germany
-
L. Prechelt, Proben1-a set of benchmarks and benching rules for neural network training algorithms, Technical Report 21/94, Fakultat fur Informatik, University of Karlsruhe, Germany, 1994.
-
(1994)
-
-
Prechelt, L.1
-
18
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
Tsymbal A., Pechenizkiy M., and Cunningham P. Diversity in search strategies for ensemble feature selection. Information Fusion 6 (2005) 83-98
-
(2005)
Information Fusion
, vol.6
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
20
-
-
26844564687
-
Generate different neural networks by negative correlation learning
-
Springer, Berlin/Heidelberg
-
Y. Liu, Generate different neural networks by negative correlation learning, Lecture Notes in Computer Science, vol. 3610, Springer, Berlin/Heidelberg, 2005, pp. 149-156.
-
(2005)
Lecture Notes in Computer Science
, vol.3610
, pp. 149-156
-
-
Liu, Y.1
-
23
-
-
0037403516
-
Measures of diversity in classifier ensembles
-
Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles. Machine Learning 51 (2003) 181-207
-
(2003)
Machine Learning
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
24
-
-
38049184914
-
Avoiding boosting overfitting by removing confusing samples
-
Vezhnevets A., and Barinova O. Avoiding boosting overfitting by removing confusing samples. Lecture Notes in Computer Science 4701 (2007) 430-441
-
(2007)
Lecture Notes in Computer Science
, vol.4701
, pp. 430-441
-
-
Vezhnevets, A.1
Barinova, O.2
|