메뉴 건너뛰기




Volumn 73, Issue 1-3, 2009, Pages 260-273

Progressive interactive training: A sequential neural network ensemble learning method

Author keywords

Bagging and boosting; Indirect communication; Negative correlation learning; Neural network ensemble

Indexed keywords

BAGGING AND BOOSTING; BENCHMARK CLASSIFICATION; BOOSTING ALGORITHM; INDIRECT COMMUNICATION; INFORMATION CENTER; INTERACTIVE TRAINING; NEGATIVE CORRELATION LEARNING; NEURAL NETWORK ENSEMBLE; SEQUENTIAL NEURAL NETWORKS; TRAINING METHODS; TRAINING PROCESS; TRAINING SCHEMES;

EID: 70350726190     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.09.001     Document Type: Article
Times cited : (11)

References (25)
  • 1
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey A.J.C. On combining artificial neural nets. Connection Science 8 (1996) 299-314
    • (1996) Connection Science , vol.8 , pp. 299-314
    • Sharkey, A.J.C.1
  • 3
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorization
    • Brown G., Wyatt J., Harris R., and Yao X. Diversity creation methods: a survey and categorization. Information Fusion 6 (2005) 99-111
    • (2005) Information Fusion , vol.6 , pp. 99-111
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 (1996) 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauter E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning 36 (1999) 105-142
    • (1999) Machine Learning , vol.36 , pp. 105-142
    • Bauter, E.1    Kohavi, R.2
  • 9
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Monirul Islam Md., Yao X., and Murase K. A constructive algorithm for training cooperative neural network ensembles. IEEE Transactions on Neural Networks 14 (2003) 820-834
    • (2003) IEEE Transactions on Neural Networks , vol.14 , pp. 820-834
    • Monirul Islam, Md.1    Yao, X.2    Murase, K.3
  • 10
    • 10444241776 scopus 로고    scopus 로고
    • Ph.D. Thesis, School of Computer Science, University of Birmingham, UK
    • G. Brown, Diversity in neural network ensembles, Ph.D. Thesis, School of Computer Science, University of Birmingham, UK, 2003.
    • (2003) Diversity in neural network ensembles
    • Brown, G.1
  • 12
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y., and Yao X. Ensemble learning via negative correlation. Neural Networks 12 (1999) 1399-1404
    • (1999) Neural Networks , vol.12 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 13
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Melville P., and Mooney R.J. Creating diversity in ensembles using artificial data. Information Fusion 6 (2005) 99-111
    • (2005) Information Fusion , vol.6 , pp. 99-111
    • Melville, P.1    Mooney, R.J.2
  • 15
    • 17644410562 scopus 로고    scopus 로고
    • A review on the ant colony optimization metaheuristic: basis, models and new trends
    • Cordon O., Herrera F., and Stützle T. A review on the ant colony optimization metaheuristic: basis, models and new trends. Mathware and Soft Computing 9 (2002) 141-175
    • (2002) Mathware and Soft Computing , vol.9 , pp. 141-175
    • Cordon, O.1    Herrera, F.2    Stützle, T.3
  • 16
    • 0004114283 scopus 로고
    • Proben1-a set of benchmarks and benching rules for neural network training algorithms
    • Technical Report 21/94, Fakultat fur Informatik, University of Karlsruhe, Germany
    • L. Prechelt, Proben1-a set of benchmarks and benching rules for neural network training algorithms, Technical Report 21/94, Fakultat fur Informatik, University of Karlsruhe, Germany, 1994.
    • (1994)
    • Prechelt, L.1
  • 18
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A., Pechenizkiy M., and Cunningham P. Diversity in search strategies for ensemble feature selection. Information Fusion 6 (2005) 83-98
    • (2005) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 20
    • 26844564687 scopus 로고    scopus 로고
    • Generate different neural networks by negative correlation learning
    • Springer, Berlin/Heidelberg
    • Y. Liu, Generate different neural networks by negative correlation learning, Lecture Notes in Computer Science, vol. 3610, Springer, Berlin/Heidelberg, 2005, pp. 149-156.
    • (2005) Lecture Notes in Computer Science , vol.3610 , pp. 149-156
    • Liu, Y.1
  • 23
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles. Machine Learning 51 (2003) 181-207
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 24
    • 38049184914 scopus 로고    scopus 로고
    • Avoiding boosting overfitting by removing confusing samples
    • Vezhnevets A., and Barinova O. Avoiding boosting overfitting by removing confusing samples. Lecture Notes in Computer Science 4701 (2007) 430-441
    • (2007) Lecture Notes in Computer Science , vol.4701 , pp. 430-441
    • Vezhnevets, A.1    Barinova, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.