메뉴 건너뛰기




Volumn , Issue , 2010, Pages 575-584

Two decades of unsupervised POS induction: How far have we come?

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER PROTOTYPE; EVALUATION FRAMEWORK; GENERALIZATION ABILITY; INDUCTION SYSTEM; PART OF SPEECH;

EID: 80053241933     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (106)

References (22)
  • 1
    • 84858386605 scopus 로고    scopus 로고
    • Painless unsupervised learning with features
    • Los Angeles, California, June
    • Taylor Berg-Kirkpatrick, Alexandre B. Côté, John DeN-ero, and Dan Klein. 2010. Painless unsupervised learning with features. In Proceedings of NAACL 2010, pages 582-590, Los Angeles, California, June.
    • (2010) Proceedings of NAACL 2010 , pp. 582-590
    • Taylor, B.-K.1    Côté, A.B.2    Nero, J.D.3    Klein, D.4
  • 2
    • 85037530680 scopus 로고    scopus 로고
    • Unsupervised part-of-speech tagging employing efficient graph clustering
    • Morristown, NJ, USA
    • Chris Biemann. 2006. Unsupervised part-of-speech tagging employing efficient graph clustering. In Proceedings of COLING ACL 2006, pages 7-12, Morristown, NJ, USA.
    • (2006) Proceedings of COLING ACL 2006 , pp. 7-12
    • Biemann, C.1
  • 4
    • 85094918571 scopus 로고    scopus 로고
    • Combining distributional and morphological information for part of speech induction
    • Morristown, NJ, USA
    • Alexander Clark. 2003. Combining distributional and morphological information for part of speech induction. In Proceedings of EACL 2003, pages 59-66, Morristown, NJ, USA.
    • (2003) Proceedings of EACL 2003 , pp. 59-66
    • Clark, A.1
  • 5
    • 84906923837 scopus 로고    scopus 로고
    • MULTEXT-east version 3: Multilingual morphosyntactic specifications, lexicons and corpora
    • LREC'04, page In print, Paris. ELRA
    • Tomaž Erjavec. 2004. MULTEXT-East Version 3: Multilingual Morphosyntactic Specifications, Lexicons and Corpora. In Fourth International Conference on Language Resources and Evaluation, LREC'04, page In print, Paris. ELRA.
    • (2004) Fourth International Conference on Language Resources and Evaluation
    • Erjavec, T.1
  • 6
    • 84862283241 scopus 로고    scopus 로고
    • Evaluating models of syntactic category acquisition without using a gold standard
    • July
    • Stella Frank, Sharon Goldwater, and Frank Keller. 2009. Evaluating models of syntactic category acquisition without using a gold standard. In Proceedings of CogSci09, July.
    • (2009) Proceedings of CogSci09
    • Frank, S.1    Goldwater, S.2    Keller, F.3
  • 8
    • 80053359625 scopus 로고    scopus 로고
    • A comparison of Bayesian estimators for unsupervised hidden Markov model pos taggers
    • Morristown, NJ, USA
    • Jianfeng Gao and Mark Johnson. 2008. A comparison of bayesian estimators for unsupervised hidden markov model pos taggers. In Proceedings of EMNLP 2008, pages 344-352, Morristown, NJ, USA.
    • (2008) Proceedings of EMNLP 2008 , pp. 344-352
    • Gao, J.1    Johnson, M.2
  • 9
    • 84860525845 scopus 로고    scopus 로고
    • A fully Bayesian approach to unsupervised part-of-speech tagging
    • Prague, Czech Republic, June
    • Sharon Goldwater and Tom Griffiths. 2007. A fully bayesian approach to unsupervised part-of-speech tagging. In Proceedings of ACL 2007, pages 744-751, Prague, Czech Republic, June.
    • (2007) Proceedings of ACL 2007 , pp. 744-751
    • Goldwater, S.1    Griffiths, T.2
  • 10
    • 80053292525 scopus 로고    scopus 로고
    • Posterior vs parameter sparsity in latent variable models
    • Y. Bengio, D. Schuurmans, J. Laf-ferty, C. K. I. Williams, and A. Culotta, editors
    • Joao Graca, Kuzman Ganchev, Ben Taskar, and Fernando Pereira. 2009. Posterior vs parameter sparsity in latent variable models. In Y. Bengio, D. Schuurmans, J. Laf-ferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 664-672.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 664-672
    • Graca, J.1    Ganchev, K.2    Ben, T.3    Fernando, P.4
  • 11
    • 70049102734 scopus 로고    scopus 로고
    • Prototype-driven learning for sequence models
    • Morristown, NJ, USA
    • Aria Haghighi and Dan Klein. 2006. Prototype-driven learning for sequence models. In Proceedings of NAACL 2006, pages 320-327, Morristown, NJ, USA.
    • (2006) Proceedings of NAACL 2006 , pp. 320-327
    • Haghighi, A.1    Klein, D.2
  • 12
    • 80053381171 scopus 로고    scopus 로고
    • Why doesn't EM find good HMM POS-taggers?
    • Prague, Czech Republic, June
    • Mark Johnson. 2007. Why doesn't EM find good HMM POS-taggers? In Proceedings of EMNLP-CoNLL 2007, pages 296-305, Prague, Czech Republic, June.
    • (2007) Proceedings of EMNLP-conll 2007 , pp. 296-305
    • Johnson, M.1
  • 13
    • 34249852033 scopus 로고
    • Building a large annotated corpus of english: The penn treebank
    • M. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993. Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics, 19(2):331-330.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 331-330
    • Marcus, M.1    Santorini, B.2    Marcinkiewicz, M.A.3
  • 14
    • 9444274777 scopus 로고    scopus 로고
    • Comparing Clusterings by the Variation of Information
    • Learning Theory and Kernel Machines
    • Marina Meilǎ. 2003. Comparing clusterings by the variation of information. In Learning Theory and Kernel Machines, pages 173-187. (Pubitemid 37053203)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 173-187
    • Meila, M.1
  • 15
    • 84867119745 scopus 로고
    • Tagging english text with a probabilistic model
    • B. Merialdo. 1994. Tagging English text with a probabilistic model. Computational Linguistics, 20(2):155-172.
    • (1994) Computational Linguistics , vol.20 , Issue.2 , pp. 155-172
    • Merialdo, B.1
  • 17
    • 84859916726 scopus 로고    scopus 로고
    • Minimized models for unsupervised part-of-speech tagging
    • Sun-tec, Singapore, August
    • Sujith Ravi and Kevin Knight. 2009. Minimized models for unsupervised part-of-speech tagging. In Proceedings of ACL-IJCNLP 2009, pages 504-512, Sun-tec, Singapore, August.
    • (2009) Proceedings of ACL-IJCNLP 2009 , pp. 504-512
    • Ravi, S.1    Knight, K.2
  • 18
    • 80053369934 scopus 로고    scopus 로고
    • V-measure: A conditional entropy-based external cluster evaluation measure
    • Andrew Rosenberg and Julia Hirschberg. 2007. V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of EMNLP-CoNLL 2007, pages 410-420.
    • (2007) Proceedings of EMNLP-conll 2007 , pp. 410-420
    • Rosenberg, A.1    Hirschberg, J.2
  • 19
    • 84859905260 scopus 로고    scopus 로고
    • Contrastive estimation: Training log-linear models on unlabeled data
    • Morris-town, NJ, USA
    • Noah A. Smith and Jason Eisner. 2005. Contrastive estimation: training log-linear models on unlabeled data. In Proceedings of ACL 2005, pages 354-362, Morris-town, NJ, USA.
    • (2005) Proceedings of ACL 2005 , pp. 354-362
    • Smith, N.A.1    Eisner, J.2
  • 20
    • 79551484033 scopus 로고    scopus 로고
    • A Bayesian LDA-based model for semi-supervised part-of-speech tagging
    • K. Toutanova and M. Johnson. 2007. A Bayesian LDA-based model for semi-supervised part-of-speech tagging. In Proceedings of NIPS 2007.
    • (2007) Proceedings of NIPS 2007
    • Toutanova, K.1    Johnson, M.2
  • 21
    • 78249244945 scopus 로고    scopus 로고
    • The infinite HMM for unsupervised PoS tagging
    • Singapore, August
    • Jurgen Van Gael, Andreas Vlachos, and Zoubin Ghahra-mani. 2009. The infinite HMM for unsupervised PoS tagging. In Proceedings of EMLNP 2009, pages 678-687, Singapore, August.
    • (2009) Proceedings of EMLNP 2009 , pp. 678-687
    • Van Gael, J.1    Vlachos, A.2    Zoubin, G.-M.3
  • 22
    • 85188809415 scopus 로고    scopus 로고
    • Unsupervised and constrained dirichlet process mixture models for verb clustering
    • Morristown, NJ, USA
    • Andreas Vlachos, Anna Korhonen, and Zoubin Ghahra-mani. 2009. Unsupervised and constrained dirichlet process mixture models for verb clustering. In Proceedings of GEMS 2009, pages 74-82, Morristown, NJ, USA.
    • (2009) Proceedings of GEMS 2009 , pp. 74-82
    • Vlachos, A.1    Korhonen, A.2    Zoubin, G.-M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.