-
1
-
-
77956611369
-
Assessment of the influence of adaptive components in trainable surface inspection systems
-
C. Eitzinger, W. Heidl, E. Lughofer, S. Raiser, J. Smith, M. Tahir, D. Sannen, and H. van Brussel Assessment of the influence of adaptive components in trainable surface inspection systems Machine Vision and Applications 21 5 2010 613 626
-
(2010)
Machine Vision and Applications
, vol.21
, Issue.5
, pp. 613-626
-
-
Eitzinger, C.1
Heidl, W.2
Lughofer, E.3
Raiser, S.4
Smith, J.5
Tahir, M.6
Sannen, D.7
Van Brussel, H.8
-
2
-
-
0032638667
-
A comparison of features for speech, music discrimination
-
IEEE Press Phoenix, USA
-
M. Carey, E. Parris, and H. Lloyd-Thomas A comparison of features for speech, music discrimination Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1999 1999 IEEE Press Phoenix, USA 149 152
-
(1999)
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1999
, pp. 149-152
-
-
Carey, M.1
Parris, E.2
Lloyd-Thomas, H.3
-
3
-
-
33751531805
-
Aggregate features and ADABOOST for music classification
-
DOI 10.1007/s10994-006-9019-7, Special Issue on Machine Learning in and for Music
-
J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kegl Aggregate features and ADA-boost for music classification Machine Learning 65 2006 473 484 (Pubitemid 44836054)
-
(2006)
Machine Learning
, vol.65
, Issue.2-3
, pp. 473-484
-
-
Bergstra, J.1
Casagrande, N.2
Erhan, D.3
Eck, D.4
Kegl, B.5
-
4
-
-
77950917666
-
On-line evolving image classifiers and their application to surface inspection
-
E. Lughofer On-line evolving image classifiers and their application to surface inspection Image and Vision Computing 28 7 2010 1065 1079
-
(2010)
Image and Vision Computing
, vol.28
, Issue.7
, pp. 1065-1079
-
-
Lughofer, E.1
-
5
-
-
0141480928
-
SVM incremental learning, adaptation and optimization
-
Boston
-
C. Diehl, G. Cauwenberghs, SVM incremental learning, adaptation and optimization, in: Proceedings of the International Joint Conference on Neural Networks, vol. 4, Boston, 2003, pp. 26852690.
-
(2003)
Proceedings of the International Joint Conference on Neural Networks
, vol.4
, pp. 2685-2690
-
-
Diehl, C.1
Cauwenberghs, G.2
-
7
-
-
69649085410
-
On humanmachine interaction during on-line image classifier training
-
E. Lughofer, J.E. Smith, P. Caleb-Solly, M. Tahir, C. Eitzinger, D. Sannen, and M. Nuttin On humanmachine interaction during on-line image classifier training IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39 5 2009 960 971
-
(2009)
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
, vol.39
, Issue.5
, pp. 960-971
-
-
Lughofer, E.1
Smith, J.E.2
Caleb-Solly, P.3
Tahir, M.4
Eitzinger, C.5
Sannen, D.6
Nuttin, M.7
-
8
-
-
36249006814
-
Visual interactive systems for end-user development: A model-based design methodology
-
DOI 10.1109/TSMCA.2007.904776
-
M. Costabile, D. Fogli, P. Mussion, and A. Piccinno Visual interactive systems for end-user development: a model-based design methodology IEEE Transactions on Systems, Man and Cybernetics, Part A: Cybernetics 37 6 2007 1029 1046 (Pubitemid 350130841)
-
(2007)
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans
, vol.37
, Issue.6
, pp. 1029-1046
-
-
Costabile, M.F.1
Fogli, D.2
Mussio, P.3
Piccinno, A.4
-
9
-
-
34548126507
-
Data-driven decomposition for multi-class classification
-
DOI 10.1016/j.patcog.2007.05.020, PII S0031320307002610
-
J. Zhou, H. Peng, and C.Y. Suen Data-driven decomposition for multi-class classification Pattern Recognition 41 1 2008 67 76 (Pubitemid 47299107)
-
(2008)
Pattern Recognition
, vol.41
, Issue.1
, pp. 67-76
-
-
Zhou, J.1
Peng, H.2
Suen, C.Y.3
-
11
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas, and R. Ladner Improving generalization with active learning Machine Learning 15 2 1994 201 221
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
12
-
-
0000695404
-
Information-based objective functions for active data selection
-
D. Mackay Information-based objective functions for active data selection Neural Computation 4 4 1992 305 318
-
(1992)
Neural Computation
, vol.4
, Issue.4
, pp. 305-318
-
-
MacKay, D.1
-
13
-
-
33947195856
-
Acoustic determinants of infant preference for motherese speech
-
A. Fernald, and P. Kuhl Acoustic determinants of infant preference for motherese speech Infant Behavior and Development 10 3 1987 279 293
-
(1987)
Infant Behavior and Development
, vol.10
, Issue.3
, pp. 279-293
-
-
Fernald, A.1
Kuhl, P.2
-
14
-
-
85124125604
-
Heterogeneous uncertainty sampling for supervised learning
-
New Brunswick, New Jersey
-
D. Lewis, J. Catlett, Heterogeneous uncertainty sampling for supervised learning, in: Proceedings of the Eleventh International Conference on Machine Learning, New Brunswick, New Jersey, 1994, pp. 148156.
-
(1994)
Proceedings of the Eleventh International Conference on Machine Learning
, pp. 148-156
-
-
Lewis, D.1
Catlett, J.2
-
15
-
-
2942688970
-
Active learning for natural language parsing and information extraction
-
Bled, Slovenia
-
C. Thompson, M. Califf, R. Mooney, Active learning for natural language parsing and information extraction, in: Proceedings of Sixteenth International Conference on Machine Learning, Bled, Slovenia, 1999, pp. 406414.
-
(1999)
Proceedings of Sixteenth International Conference on Machine Learning
, pp. 406-414
-
-
Thompson, C.1
Califf, M.2
Mooney, R.3
-
18
-
-
60549099603
-
FR3: A fuzzy rule learner for inducing reliable classifiers
-
J. Hühn, and E. Hüllermeier FR3: a fuzzy rule learner for inducing reliable classifiers IEEE Transactions on Fuzzy Systems 17 1 2009 138 149
-
(2009)
IEEE Transactions on Fuzzy Systems
, vol.17
, Issue.1
, pp. 138-149
-
-
Hühn, J.1
Hüllermeier, E.2
-
19
-
-
33749445935
-
Active learning for image retrieval with co-SVM
-
J. Cheng, and K. Wang Active learning for image retrieval with co-SVM Pattern Recognition 40 2006 330 334
-
(2006)
Pattern Recognition
, vol.40
, pp. 330-334
-
-
Cheng, J.1
Wang, K.2
-
20
-
-
13544261390
-
Combining active and semi-supervised learning for spoken language understanding
-
DOI 10.1016/j.specom.2004.08.002, PII S0167639304000962
-
G. Tur, D.-H. Tür, and R. Schapire Combining active and semi-supervised learning for spoken language understanding Speech Communication 45 2 2005 171 186 (Pubitemid 40220192)
-
(2005)
Speech Communication
, vol.45
, Issue.2
, pp. 171-186
-
-
Tur, G.1
Hakkani-Tur, D.2
Schapire, R.E.3
-
21
-
-
50149110194
-
Applying evolving fuzzy models with adaptive local error bars to on-line fault detection
-
Witten-Bommerholz, Germany
-
E. Lughofer, C. Guardiola, Applying evolving fuzzy models with adaptive local error bars to on-line fault detection, in: Proceedings of Genetic and Evolving Fuzzy Systems 2008, Witten-Bommerholz, Germany, 2008, pp. 3540.
-
(2008)
Proceedings of Genetic and Evolving Fuzzy Systems 2008
, pp. 3540
-
-
Lughofer, E.1
Guardiola, C.2
-
22
-
-
0033640737
-
Statistical active learning in multilayer perceptrons
-
DOI 10.1109/72.822506
-
K. Fukumizu Statistical active learning in multilayer perceptrons IEEE Transactions on Neural Networks 11 1 2000 17 26 (Pubitemid 32132884)
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.1
, pp. 17-26
-
-
Fukumizu, K.1
-
23
-
-
0042868698
-
Support vector machine active learning with application to text classification
-
S. Tong, and D. Koller Support vector machine active learning with application to text classification Journal of Machine Learning Research 2 2001 45 66
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
26
-
-
33747134006
-
Active learning with feedback on both features and instances
-
H. Raghavan, O. Madani, and R. Jones Active learning with feedback on both features and instances Journal of Machine Learning Research 7 2006 1655 1686 (Pubitemid 44223089)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1655-1686
-
-
Raghavan, H.1
Madani, O.2
Jones, R.3
-
27
-
-
67649410207
-
Unsupervised active learning based on hierarchical graph-theoretic clustering
-
W. Hu, W. Hu, N. Xi, and S. Maybank Unsupervised active learning based on hierarchical graph-theoretic clustering IEEE Transactions on Systems Man and Cybernetics - Part B: Cybernetics 39 5 2009 1147 1161
-
(2009)
IEEE Transactions on Systems Man and Cybernetics - Part B: Cybernetics
, vol.39
, Issue.5
, pp. 1147-1161
-
-
Hu, W.1
Hu, W.2
Xi, N.3
Maybank, S.4
-
28
-
-
35448950018
-
Extensions of vector quantization for incremental clustering
-
DOI 10.1016/j.patcog.2007.07.019, PII S0031320307003354, Feature Generation and Machine Learning for Robust Multimodal Biometrics
-
E. Lughofer Extensions of vector quantization for incremental clustering Pattern Recognition 41 3 2008 995 1011 (Pubitemid 47632671)
-
(2008)
Pattern Recognition
, vol.41
, Issue.3
, pp. 995-1011
-
-
Lughofer, E.1
-
31
-
-
74549134539
-
Increasing on-line classification performance using incremental classifier fusion
-
Klagenfurt, Austria
-
D. Sannen, E. Lughofer, H.V. Brussel, Increasing on-line classification performance using incremental classifier fusion, in: Proceedings of the International Conference on Adaptive and Intelligent Systems (ICAIS'09), Klagenfurt, Austria, 2009, pp. 101107.
-
(2009)
Proceedings of the International Conference on Adaptive and Intelligent Systems (ICAIS'09)
, pp. 101-107
-
-
Sannen, D.1
Lughofer, E.2
Brussel, H.V.3
-
32
-
-
77952642202
-
Incremental induction of decision trees
-
P. Utgoff Incremental induction of decision trees Machine Learning 4 2 1989 161 186
-
(1989)
Machine Learning
, vol.4
, Issue.2
, pp. 161-186
-
-
Utgoff, P.1
-
34
-
-
80052967920
-
Can adaboost.m1 learn incrementally? A comparison to learn under different combination rules
-
Athens, Greece
-
H. Mohammed, J. Leander, M. Marbach, R. Polikar, Can adaboost.m1 learn incrementally? A comparison to learn under different combination rules, in: Proceedings of the Artificial Neural Networks Conference 2006, Athens, Greece, 2006, pp. 172179.
-
(2006)
Proceedings of the Artificial Neural Networks Conference 2006
, pp. 172-179
-
-
Mohammed, H.1
Leander, J.2
Marbach, M.3
Polikar, R.4
-
35
-
-
0035521110
-
Learn++: An incremental learning algorithm for supervised neural networks
-
DOI 10.1109/5326.983933, PII S1094697701112617, Knowledge Management
-
R. Polikar, L. Upda, S. Upda, and V. Honavar Learn: An incremental learning algorithm for supervised neural networks IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 31 4 2001 497 508 (Pubitemid 34191829)
-
(2001)
IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
, vol.31
, Issue.4
, pp. 497-508
-
-
Polikar, R.1
Udpa, L.2
Udpa, S.S.3
Honavar, V.4
-
36
-
-
0035670764
-
Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
-
N.K. Kasabov Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 31 6 2001 902 918
-
(2001)
IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics
, vol.31
, Issue.6
, pp. 902-918
-
-
Kasabov, N.K.1
-
37
-
-
0036530967
-
DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
-
DOI 10.1109/91.995117, PII S106367060202965X
-
N.K. Kasabov, and Q. Song DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Transactions on Fuzzy Systems 10 2 2002 144 154 (Pubitemid 34554860)
-
(2002)
IEEE Transactions on Fuzzy Systems
, vol.10
, Issue.2
, pp. 144-154
-
-
Kasabov, N.K.1
Song, Q.2
-
38
-
-
55249122198
-
FLEXFIS: A robust incremental learning approach for evolving TS fuzzy models
-
E. Lughofer FLEXFIS: a robust incremental learning approach for evolving TS fuzzy models IEEE Transactions on Fuzzy Systems 16 6 2008 1393 1410
-
(2008)
IEEE Transactions on Fuzzy Systems
, vol.16
, Issue.6
, pp. 1393-1410
-
-
Lughofer, E.1
-
39
-
-
70449562136
-
Evolving vector quantization for classification of on-line data streams
-
Vienna, Austria
-
E. Lughofer, Evolving vector quantization for classification of on-line data streams, in: Proceedings of the Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA 2008), Vienna, Austria, 2008, pp. 780786.
-
(2008)
Proceedings of the Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA 2008)
, pp. 780-786
-
-
Lughofer, E.1
-
40
-
-
0021412027
-
Vector quantization
-
R. Gray Vector quantization IEEE ASSP Magazine 1 2 1984 4 29
-
(1984)
IEEE ASSP Magazine
, vol.1
, Issue.2
, pp. 4-29
-
-
Gray, R.1
-
41
-
-
77950663376
-
Towards robust evolving fuzzy systems
-
P. Angelov, D. Filev, N. Kasabov, John Wiley & Sons New York
-
E. Lughofer Towards robust evolving fuzzy systems P. Angelov, D. Filev, N. Kasabov, Evolving Intelligent Systems: Methodology and Applications 2010 John Wiley & Sons New York 87 126
-
(2010)
Evolving Intelligent Systems: Methodology and Applications
, pp. 87-126
-
-
Lughofer, E.1
-
42
-
-
0003684449
-
-
second ed. Springer New York, Berlin, Heidelberg
-
T. Hastie, R. Tibshirani, and J. Friedman The Elements of Statistical Learning: Data Mining, Inference and Prediction second ed. 2009 Springer New York, Berlin, Heidelberg
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
43
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer, and M. Kubat Learning in the presence of concept drift and hidden contexts Machine Learning 23 1 1996 69 101 (Pubitemid 126737384)
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
-
44
-
-
50249149884
-
Evolving single- and multi-model fuzzy classifiers with FLEXFIS-Class
-
London, UK
-
E. Lughofer, P. Angelov, X. Zhou, Evolving single- and multi-model fuzzy classifiers with FLEXFIS-Class, in: Proceedings of FUZZ-IEEE 2007, London, UK, 2007, pp. 363368.
-
(2007)
Proceedings of FUZZ-IEEE 2007
, pp. 363-368
-
-
Lughofer, E.1
Angelov, P.2
Zhou, X.3
-
45
-
-
0021892282
-
Fuzzy identification of systems and its applications to modeling and control
-
T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Transactions on Systems, Man and Cybernetics 15 1 1985 116 132
-
(1985)
IEEE Transactions on Systems, Man and Cybernetics
, vol.15
, Issue.1
, pp. 116-132
-
-
Takagi, T.1
Sugeno, M.2
-
47
-
-
0026928374
-
Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
-
DOI 10.1109/72.159070
-
L. Wang, and J. Mendel Fuzzy basis functions universal approximation and orthogonal least-squares learning IEEE Transactions on Neural Networks 3 5 1992 807 814 (Pubitemid 23555771)
-
(1992)
IEEE Transactions on Neural Networks
, vol.3
, Issue.5
, pp. 807-814
-
-
Wang Li-Xin1
Mendel Jerry, M.2
-
49
-
-
77956613036
-
Impact of object extraction methods on classification performance in surface inspection systems
-
S. Raiser, E. Lughofer, C. Eitzinger, and J. Smith Impact of object extraction methods on classification performance in surface inspection systems Machine Vision and Applications 21 5 2010 627 641
-
(2010)
Machine Vision and Applications
, vol.21
, Issue.5
, pp. 627-641
-
-
Raiser, S.1
Lughofer, E.2
Eitzinger, C.3
Smith, J.4
-
53
-
-
0003922190
-
-
second ed. Wiley-Interscience (John Wiley & Sons), Southern Gate, Chichester, West Sussex, England
-
R. Duda, P. Hart, D. Stork, Pattern Classification, second ed. Wiley-Interscience (John Wiley & Sons), Southern Gate, Chichester, West Sussex, England, 2000.
-
(2000)
Pattern Classification
-
-
Duda, R.1
Hart, P.2
Stork, D.3
|