메뉴 건너뛰기




Volumn , Issue , 2010, Pages 87-126

Toward Robust Evolving Fuzzy Systems

Author keywords

Evolving fuzzy classifiers with FLEXFIS Class and Evolving fuzzy systems and robustness improving issues; Robust evolving fuzzy systems

Indexed keywords


EID: 77950663376     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470569962.ch5     Document Type: Chapter
Times cited : (10)

References (67)
  • 2
    • 23944495345 scopus 로고    scopus 로고
    • Simpl_eTS:ASimplified Method for Learning EvolvingTakagi-Sugeno Fuzzy Models
    • Reno, Nevada
    • P. Angelov , D. Filev, "Simpl_eTS:ASimplified Method for Learning EvolvingTakagi-Sugeno Fuzzy Models." Proceedings of FUZZ-IEEE 2005, Reno, Nevada, 2005, pp. 1068-1073.
    • (2005) Proceedings of FUZZ-IEEE 2005 , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 3
    • 40949155135 scopus 로고    scopus 로고
    • Architectures for Evolving Fuzzy Rule-Based Classifiers
    • Montreal, Canada
    • P. Angelov , X. Zhou, D. Filev, E. Lughofer, "Architectures for Evolving Fuzzy Rule-Based Classifiers." Proceedings of SMC 2007, Montreal, Canada, 2007, pp. 2050-2055.
    • (2007) Proceedings of SMC 2007 , pp. 2050-2055
    • Angelov, P.1    Zhou, X.2    Filev, D.3    Lughofer, E.4
  • 6
    • 36448929160 scopus 로고    scopus 로고
    • Data-Driven Evolving Fuzzy Systems Using eTS and FLEXFIS: Comparative Analysis
    • P.P. Angelov , E. Lughofer, "Data-Driven Evolving Fuzzy Systems Using eTS and FLEXFIS: Comparative Analysis," International Journal of General Systems, 37 (1): 45-67, 2008.
    • (2008) International Journal of General Systems , vol.37 , Issue.1 , pp. 45-67
    • Angelov, P.P.1    Lughofer, E.2
  • 9
    • 33947424437 scopus 로고    scopus 로고
    • Some Considerations Concerning Regularization and Parameter Choice Algorithms
    • F. Bauer , "Some Considerations Concerning Regularization and Parameter Choice Algorithms," Inverse Problems, 23: 837-858, 2007.
    • (2007) Inverse Problems , vol.23 , pp. 837-858
    • Bauer, F.1
  • 13
    • 0032334093 scopus 로고    scopus 로고
    • Minimax Estimation viaWavelet Shrinkage
    • D. Donoho , I. Johnstone, "Minimax Estimation viaWavelet Shrinkage," Annual Statistics, 26: 879-921, 1998.
    • (1998) Annual Statistics3 , vol.26 , pp. 879-921
    • Donoho, D.1    Johnstone, I.2
  • 18
    • 0021412027 scopus 로고
    • Vector Quantization
    • R. M. Gray , "Vector Quantization," IEEE ASSP, pages 4-29, 1984.
    • (1984) IEEE ASSP , pp. 4-29
    • Gray, R.M.1
  • 20
    • 33645381264 scopus 로고    scopus 로고
    • AComparison ofVariable Selection Methods with the Main Focus on Orthogonalization
    • (M. Lopéz-Díaz, M. Á . Gil, P. Grzegorzewski, O. Hryniewicz, J. Lawry, ed.) Berlin, Heidelberg, New York: Springer, 2004, pp. 479-486.
    • W. Groißböck , E. Lughofer,E. P. Klement, "AComparison ofVariable Selection Methods with the Main Focus on Orthogonalization." In Soft Methodology and Random Information Systems: Advances in Soft Computing. (M. Lopéz-Díaz, M. Á . Gil, P. Grzegorzewski, O. Hryniewicz, J. Lawry, ed.) Berlin, Heidelberg, New York: Springer, 2004, pp. 479-486.
    • In Soft Methodology and Random Information Systems: Advances in Soft Computing
    • Groißböck, W.1    Lughofer, E.2    Klement, E.P.3
  • 21
    • 33645070541 scopus 로고    scopus 로고
    • Sequential Adaptive Fuzzy Inference System (SAFIS) for Nonlinear System Identification and Prediction
    • N. Sundararajan , H.-J. Rong, G.-B. Huang, P. Saratchandran, "Sequential Adaptive Fuzzy Inference System (SAFIS) for Nonlinear System Identification and Prediction," Fuzzy Sets and Systems, 157 (9): 1260-1275, 2006.
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.9 , pp. 1260-1275
    • Sundararajan, N.1    Rong, H.-J.2    Huang, G.-B.3    Saratchandran, P.4
  • 22
    • 0023570429 scopus 로고
    • The truncated svd as a Method for Regularization
    • P. C. Hansen , "The truncated svd as a Method for Regularization," BIT, 27: 534-553, 1987.
    • (1987) BIT , vol.27 , pp. 534-553
    • Hansen, P.C.1
  • 29
    • 0032597810 scopus 로고    scopus 로고
    • Performance Evaluation of Fuzzy Classifier Systems for Multidimensional Pattern Classification Problems
    • IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
    • H. Ishibushi , T. Nakashima, T. Murata, "Performance Evaluation of Fuzzy Classifier Systems for Multidimensional Pattern Classification Problems," IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 29 (5): 601-618, 1999.
    • (1999) , vol.29 , Issue.5 , pp. 601-618
    • Ishibushi, H.1    Nakashima, T.2    Murata, T.3
  • 30
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of Interpretability-Accuracy Tradeoff of Fuzzy Systems by Multiobjective Fuzzy Genetics-Based Machine Learning
    • H. Ishibushi ,Y. Nojima, "Analysis of Interpretability-Accuracy Tradeoff of Fuzzy Systems by Multiobjective Fuzzy Genetics-Based Machine Learning," Int. Journal of Approximate Reasoning, 44 (1): 4-31, 2007.
    • (2007) Int. Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibushi, H.1    Nojima, Y.2
  • 31
    • 0346076776 scopus 로고    scopus 로고
    • Multiobjective Identification of Takagi-Sugeno Fuzzy Models
    • T. A. Johansen , R. Babuska, "Multiobjective Identification of Takagi-Sugeno Fuzzy Models," IEEE Transactions on Fuzzy Systems, 11 (6): 847-860, 2003.
    • (2003) IEEE Transactions on Fuzzy Systems , vol.11 , Issue.63 , pp. 847-860
    • Johansen, T.A.1    Babuska, R.2
  • 33
    • 0035670764 scopus 로고    scopus 로고
    • Evolving Fuzzy Neural Networks for Supervised/Unsupervised Online Knowledge-Based Learning
    • N. K. Kasabov , "Evolving Fuzzy Neural Networks for Supervised/Unsupervised Online Knowledge-Based Learning," IEEE Trans. on Systems, Men and Cybernetics, Part B (Cybernetics), 31 (6): 902-918, 2001.
    • (2001) IEEE Trans. on Systems, Men and Cybernetics, Part B (Cybernetics) , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.K.1
  • 34
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and Its Application for Time-Series Prediction
    • N. K. Kasabov , Q. Song, "DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and Its Application for Time-Series Prediction," IEEE Trans. on Fuzzy Systems, 10 (2): 144-154, 2002.
    • (2002) IEEE Trans. on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 35
    • 0025404409 scopus 로고
    • Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Parts I and II
    • C. C. Lee , "Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Parts I and II," IEEE Trans. System, Man, Cybernetics, 20: 404-435, 1990.
    • (1990) IEEE Trans. System, Man, Cybernetics , vol.20 , pp. 404-435
    • Lee, C.C.1
  • 36
    • 11244351634 scopus 로고    scopus 로고
    • An Approach for On-line Extraction of Fuzzy Rules Using a Self-Organising Fuzzy Neural Network
    • G. Leng , T. M.. McGinnity, G. Prasad, "An Approach for On-line Extraction of Fuzzy Rules Using a Self-Organising Fuzzy Neural Network," Fuzzy Sets and Systems, 150 (2): 211-243, 2005.
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 37
    • 0000012624 scopus 로고
    • On a Problem of Adaptive Estimation in Gaussian White Noise
    • O. V. Lepskij , "On a Problem of Adaptive Estimation in Gaussian White Noise," Theory of Probability and its Applications, 35 (3): 454-466, 1990.
    • (1990) Theory of Probability and its Applications , vol.35 , Issue.3 , pp. 454-466
    • Lepskij, O.V.1
  • 40
    • 35448950018 scopus 로고    scopus 로고
    • Extensions of Vector Quantization for Incremental Clustering
    • E. Lughofer , "Extensions of Vector Quantization for Incremental Clustering," Pattern Recognition, 41 (3): 995-1011, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 995-1011
    • Lughofer, E.1
  • 42
    • 50249149884 scopus 로고    scopus 로고
    • Evolving Single-and Multi-Model Fuzzy Classifiers with FLEXFIS-Class
    • London, UK
    • E. Lughofer , P. Angelov, X. Zhou, "Evolving Single- and Multi-Model Fuzzy Classifiers with FLEXFIS-Class." Proceedings of FUZZ-IEEE 2007, London, UK, 2007 pp. 363-368.
    • (2007) Proceedings of FUZZ-IEEE 2007 , pp. 363-368
    • Lughofer, E.1    Angelov, P.2    Zhou, X.3
  • 43
    • 50149110194 scopus 로고    scopus 로고
    • Applying Evolving Fuzzy Models with Adaptive Local Error Bars to On-line Fault Detection
    • Witten-Bommerholz, Germany
    • E. Lughofer ,C. Guardiola, "Applying Evolving Fuzzy Models with Adaptive Local Error Bars to On-line Fault Detection." Proceedings of Genetic and Evolving Fuzzy Systems 2008, Witten-Bommerholz, Germany, 2008, pp. 35-40.
    • (2008) Proceedings of Genetic and Evolving Fuzzy Systems 2008 , pp. 35-40
    • Lughofer, E.1    Guardiola, C.2
  • 45
    • 84871941909 scopus 로고    scopus 로고
    • Improving the Interpretability of Data-Driven Evolving Fuzzy Systems
    • Barcelona, Spain
    • E. Lughofer , E. Hüllermeier, E. P. Klement, "Improving the Interpretability of Data-Driven Evolving Fuzzy Systems." Proceedings of EUSFLAT 2005, Barcelona, Spain, 2005, pp. 28-33.
    • (2005) Proceedings of EUSFLAT 2005 , pp. 28-33
    • Lughofer, E.1    Hüllermeier, E.2    Klement, E.P.3
  • 47
    • 0000739264 scopus 로고
    • On the Solution of Functional Equations by the Methdod of Regularization
    • V. A. Morozov , "On the Solution of Functional Equations by the Methdod of Regularization," Sov. Math. Dokl, 7: 414-417, 1965.
    • (1965) Sov. Math. Dokl , vol.7 , pp. 414-417
    • Morozov, V.A.1
  • 48
    • 0001703957 scopus 로고    scopus 로고
    • A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules from Data
    • D. Nauck , R. Kruse, "A Neuro-Fuzzy Method to Learn Fuzzy Classification Rules from Data," Fuzzy Sets and Systems, 89(3): 277-288, 1997.
    • (1997) Fuzzy Sets and Systems , vol.89 , Issue.3 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 49
    • 0038197780 scopus 로고    scopus 로고
    • Heidelberg, New York: Physica Verlag, Springer- Verlag
    • A. Piegat , Fuzzy Modeling and Control. Heidelberg, New York: Physica Verlag, Springer- Verlag, 2001.
    • (2001) Fuzzy Modeling and Control
    • Piegat, A.1
  • 50
    • 11244269068 scopus 로고    scopus 로고
    • Machine Learning from Imbalanced Data Sets
    • Menlo Park, CA
    • F. Provost , "Machine Learning from Imbalanced Data Sets." Proceedings of the AAAI workshop, Menlo Park, CA, 2000, pp. 1-3.
    • (2000) Proceedings of the AAAI workshop , pp. 1-3
    • Provost, F.1
  • 51
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for Adaptive Process Monitoring
    • S. J. Qin , W. Li, H. H. Yue, "Recursive PCA for Adaptive Process Monitoring," Journal of Process Control, 10: 471-486, 2000.
    • (2000) Journal of Process Control , vol.10 , pp. 471-486
    • Qin, S.J.1    Li, W.2    Yue, H.H.3
  • 53
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • D. Donoho , S. Chen, M. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., 43 (1): 129-159, 2001.
    • (2001) SIAM Rev , vol.43 , Issue.1 , pp. 129-159
    • Donoho, D.1    Chen, S.2    Saunders, M.3
  • 54
    • 69649104005 scopus 로고    scopus 로고
    • An Interactive Self- Adaptive On-line Image Classification Framework
    • of LNCS ( A. Gasteratos, M. Vincze, J. K. Tsotsos, ed.) Santorini Island, Greece: Springer
    • D. Sannen , M. Nuttin, J. E. Smith, M. A. Tahir, E. Lughofer, C. Eitzinger, "An Interactive Self- Adaptive On-line Image Classification Framework." In, Proceedings of ICVS 2008, Vol. 5008 of LNCS ( A. Gasteratos, M. Vincze, J. K. Tsotsos, ed.) Santorini Island, Greece: Springer, 2008 pp. 173-180.
    • (2008) In, Proceedings of ICVS 2008 , vol.5008 , pp. 173-180
    • Sannen, D.1    Nuttin, M.2    Smith, J.E.3    Tahir, M.A.4    Lughofer, E.5    Eitzinger, C.6
  • 56
    • 0000629975 scopus 로고
    • Cross-Validatory Choice and Assessment of Statistical Predictions
    • M. Stone , "Cross-Validatory Choice and Assessment of Statistical Predictions," Journal of the Royal Statistical Society, 36: 111-147, 1974.
    • (1974) Journal of the Royal Statistical Society , vol.36 , pp. 111-147
    • Stone, M.1
  • 58
    • 0029193556 scopus 로고
    • Generation and Improvement of Fuzzy Classifiers with Incremental Learning Using Fuzzy Rulenet
    • Nashville, Tennessee, ACM Press, New York
    • N. Tschichold-Guerman , "Generation and Improvement of Fuzzy Classifiers with Incremental Learning Using Fuzzy Rulenet." Proceedings of the 1995 ACM Symposium on Applied Computing, Nashville, Tennessee, 1995, ACM Press, New York.
    • (1995) Proceedings of the 1995 ACM Symposium on Applied Computing
    • Tschichold-Guerman, N.1
  • 59
    • 26444562687 scopus 로고    scopus 로고
    • The Problem of Concept Drift: Definitions and Related Work
    • Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland
    • A. Tsymbal , "The Problem of Concept Drift: Definitions and Related Work." Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland, 2004.
    • (2004)
    • Tsymbal, A.1
  • 61
    • 0026928374 scopus 로고
    • Fuzzy Basis Functions, Universal Approximation and Orthogonal Least-Squares Learning
    • L. X. Wang , J. M. Mendel, "Fuzzy Basis Functions, Universal Approximation and Orthogonal Least-Squares Learning," IEEE Trans. Neural Networks, 3(5): 807-814, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 62
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the Presence of Concept Drift and Hidden Contexts
    • G. Widmer , M. Kubat, "Learning in the Presence of Concept Drift and Hidden Contexts," Machine Learning, 23(1): 69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 64
    • 0035415951 scopus 로고    scopus 로고
    • A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic Fuzzy Neural Networks
    • S. Wu , M. J. Er, Y. Gao, "A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic Fuzzy Neural Networks," IEEE Trans. on Fuzzy Systems, 9(4): 578-594, 2001.
    • (2001) IEEE Trans. on Fuzzy Systems , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 65
    • 0040527678 scopus 로고
    • Technical Report MII-1318R, Machine Intelligence Institute, Iona College, New Rochelle, NY 1080
    • R. Yager , D. Filev, "Generation of Fuzzy Rules by Mountain Clustering." Technical Report MII-1318R, Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, 1994.
    • (1994) Generation of Fuzzy Rules by Mountain Clustering
    • Yager, R.1    Filev, D.2
  • 67
    • 0032205732 scopus 로고    scopus 로고
    • Improving the Interpretability of TSK Fuzzy Models by Combining Global Learning and Local Learning
    • J. Yen , L. Wang, C. W. Gillespie, "Improving the Interpretability of TSK Fuzzy Models by Combining Global Learning and Local Learning," IEEE Trans. on Fuzzy Systems, 6(4): 530-537, 1998.
    • (1998) IEEE Trans. on Fuzzy Systems , vol.6 , Issue.4 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.