메뉴 건너뛰기




Volumn , Issue , 2008, Pages 779-784

Evolving vector quantization for classification of on-line data streams

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION TECHNIQUE; DATA SAMPLE; FEATURE DATA; FEATURE SPACE; HIGH-DIMENSIONAL; LABEL INFORMATION; LEARNING VECTOR QUANTIZATION; MATRIX; ON-DEMAND; ON-LINE QUALITY CONTROL; ONLINE DATA; PRODUCTION PROCESS; TRAINING PROCESS;

EID: 70449562136     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIMCA.2008.47     Document Type: Conference Paper
Times cited : (15)

References (13)
  • 3
    • 0002954208 scopus 로고
    • Adaptive resonance theory (art)
    • M. A. Arbib, editor, MIT Press, Cambridge, MA
    • G. A. Carpenter and S. Grossberg. Adaptive resonance theory (art). In M. A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 79-82. MIT Press, Cambridge, MA, 1995.
    • (1995) Handbook of Brain Theory and Neural Networks , pp. 79-82
    • Carpenter, G.A.1    Grossberg, S.2
  • 5
    • 0021412027 scopus 로고
    • Vector quantization
    • R. Gray. Vector quantization. IEEE ASSP Magazine, pages 4-29, 1984.
    • (1984) IEEE ASSP Magazine , pp. 4-29
    • Gray, R.1
  • 6
    • 10844278603 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining
    • Springer Verlag, New York, Berlin, Heidelberg, Germany
    • T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer Verlag, New York, Berlin, Heidelberg, Germany, 2001.
    • (2001) Inference and Prediction
    • Hastie, T.1    Tibshirani, R.2    Friedman., J.3
  • 7
    • 0023855839 scopus 로고
    • An introduction to neural computing
    • T. Kohonen. An introduction to neural computing. Neural Networks, 1:3-16, 1988.
    • (1988) Neural Networks , vol.1 , pp. 3-16
    • Kohonen., T.1
  • 9
    • 35448950018 scopus 로고    scopus 로고
    • Extensions of vector quantization for incremental clustering
    • E. Lughofer. Extensions of vector quantization for incremental clustering. Pattern Recognition, 41(3):995-1011, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 995-1011
    • Lughofer, E.1
  • 10
    • 30244530939 scopus 로고
    • DVQ: Dynamic vector quantization - An incremental LVQ
    • T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Elsevier Science Publishers B.V. North-Holland
    • F. Poirier and A. Ferrieux. DVQ: Dynamic vector quantization - an incremental LVQ. In T. Kohonen, K. Mäkisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, pages 1333-1336. Elsevier Science Publishers B.V., North-Holland, 1991.
    • (1991) Artificial Neural Networks , pp. 1333-1336
    • Poirier, F.1    Ferrieux., A.2
  • 11
    • 69649104005 scopus 로고    scopus 로고
    • An interactive self-adaptive on-line image classification framework
    • A. Gasteratos, M. Vincze, and J. Tsotsos, editors, Springer, Santorini Island, Greece
    • D. Sannen, M. Nuttin, J. Smith, M. Tahir, E. Lughofer, and C. Eitzinger. An interactive self-adaptive on-line image classification framework. In A. Gasteratos, M. Vincze, and J. Tsotsos, editors, Proceedings of ICVS 2008, volume 5008 of LNCS, pages 173-180. Springer, Santorini Island, Greece, 2008.
    • (2008) Proceedings of ICVS 2008, Volume 5008 of LNCS , pp. 173-180
    • Sannen, D.1    Nuttin, M.2    Smith, J.3    Tahir, M.4    Lughofer, E.5    Eitzinger, C.6
  • 13
    • 0032597793 scopus 로고    scopus 로고
    • Online learning vector quantization: A harmonic competition approach based on conservation network
    • J.-H. Wang and W.-D. Sun. Online learning vector quantization: a harmonic competition approach based on conservation network. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 29(5):642-653, 1999.
    • (1999) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.29 , Issue.5 , pp. 642-653
    • Wang, J.-H.1    Sun, W.-D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.