메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 3223-3234

Encoding subcomponents in cooperative co-evolutionary recurrent neural networks

Author keywords

Cooperative coevolution; Genetic algorithms; Grammatical inference; Neuro evolution; Recurrent neural networks

Indexed keywords

CO-EVOLUTIONARY; COOPERATIVE CO-EVOLUTION; ENCODING SCHEMES; GRAMMATICAL INFERENCES; HIGH-DIMENSIONAL; NEURAL NETWORK TRAINING; NEURO-EVOLUTION; NON-SEPARABILITY; PROBLEM-DECOMPOSITION METHODS; SEARCH PROBLEM;

EID: 80052929304     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.05.003     Document Type: Article
Times cited : (32)

References (36)
  • 1
    • 0033360022 scopus 로고    scopus 로고
    • Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems
    • Giles C.L., Omlin C., Thornber K.K. Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems. Proc. IEEE 1999, 87(9):1623-1640.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1623-1640
    • Giles, C.L.1    Omlin, C.2    Thornber, K.K.3
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 3
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results
    • Scarselli F., Tsoi A.C. Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results. Neural Networks 1998, 11(1):15-37.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 4
    • 34547898032 scopus 로고    scopus 로고
    • Recurrent neural networks are universal approximators
    • Schaefer A., Zimmermann H. Recurrent neural networks are universal approximators. Int. J. Neural Syst. 2007, 17(4):253-263.
    • (2007) Int. J. Neural Syst. , vol.17 , Issue.4 , pp. 253-263
    • Schaefer, A.1    Zimmermann, H.2
  • 5
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y., Simard P., Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 1994, 5(2):157-166.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 6
    • 0003061833 scopus 로고
    • Successes and failures of backpropagation: a theoretical investigation
    • Ablex Publishing
    • Frasconi P., Gori M., Tesi A. Successes and failures of backpropagation: a theoretical investigation. Progress in Neural Networks 1993, 205-242. Ablex Publishing.
    • (1993) Progress in Neural Networks , pp. 205-242
    • Frasconi, P.1    Gori, M.2    Tesi, A.3
  • 7
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proc. IEEE 1999, 87(9):1423-1448.
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1423-1448
    • Yao, X.1
  • 9
    • 0031287711 scopus 로고    scopus 로고
    • Incremental evolution of complex general behavior
    • Gomez F., Mikkulainen R. Incremental evolution of complex general behavior. Adapt. Behav. 1997, 5(3-4):317-342. 〈http://dx.doi.org/10.1177/105971239700500305〉.
    • (1997) Adapt. Behav. , vol.5 , Issue.3-4 , pp. 317-342
    • Gomez, F.1    Mikkulainen, R.2
  • 10
    • 80052956480 scopus 로고    scopus 로고
    • Robust Non-Linear Control through Neuroevolution, Technical Report AI-TR-03-303, Ph.D. Thesis, Department of Computer Science, The University of Texas at Austin
    • F.J. Gomez, Robust Non-Linear Control through Neuroevolution, Technical Report AI-TR-03-303, Ph.D. Thesis, Department of Computer Science, The University of Texas at Austin, 2003.
    • (2003)
    • Gomez, F.J.1
  • 11
    • 44649193889 scopus 로고    scopus 로고
    • Accelerated neural evolution through cooperatively coevolved synapses
    • Gomez F., Schmidhuber J., Miikkulainen R. Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 2008, 9:937-965.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 937-965
    • Gomez, F.1    Schmidhuber, J.2    Miikkulainen, R.3
  • 12
    • 0037844875 scopus 로고    scopus 로고
    • COVNET: a cooperative coevolutionary model for evolving artificial neural networks
    • Garcia-Pedrajas N., Hervas-Martinez C., Munoz-Perez J. COVNET: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans. Neural Networks 2003, 14(3):575-596.
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.3 , pp. 575-596
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Munoz-Perez, J.3
  • 13
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • Garcia-Pedrajas N., Hervas-Martinez C., Ortiz-Boyer D. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans Evolut. Comput. 2005, 9(3):271-302.
    • (2005) IEEE Trans Evolut. Comput. , vol.9 , Issue.3 , pp. 271-302
    • Garcia-Pedrajas, N.1    Hervas-Martinez, C.2    Ortiz-Boyer, D.3
  • 15
    • 0034876520 scopus 로고    scopus 로고
    • Scaling up fast evolutionary programming with cooperative coevolution, in: Proceedings of the 2001 Congress on Evolutionary Computation, doi:10.1109/CEC.2001.934314.
    • Y. Liu, X. Yao, Q. Zhao, T. Higuchi, Scaling up fast evolutionary programming with cooperative coevolution, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, pp. 1101-1108, doi:10.1109/CEC.2001.934314.
    • (2001) , pp. 1101-1108
    • Liu, Y.1    Yao, X.2    Zhao, Q.3    Higuchi, T.4
  • 16
    • 0029768771 scopus 로고    scopus 로고
    • Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms
    • Salomon R. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. Biosystems 1996, 39(3):263-278.
    • (1996) Biosystems , vol.39 , Issue.3 , pp. 263-278
    • Salomon, R.1
  • 17
    • 33847649288 scopus 로고    scopus 로고
    • Training recurrent networks by Evolino
    • Schmidhuber J., Wierstra D., Gagliolo M., Gomez F. Training recurrent networks by Evolino. Neural Comput. 2007, 19(3):757-779. 〈http://dx.doi.org/10.1162/neco.2007.19.3.757〉.
    • (2007) Neural Comput. , vol.19 , Issue.3 , pp. 757-779
    • Schmidhuber, J.1    Wierstra, D.2    Gagliolo, M.3    Gomez, F.4
  • 18
    • 0035186217 scopus 로고    scopus 로고
    • A real-coded genetic algorithm for training recurrent neural networks
    • Blanco A., Delgado M., Pegalajar M.C. A real-coded genetic algorithm for training recurrent neural networks. Neural Network 2001, 14(1):93-105. 〈http://dx.doi.org/10.1016/S0893-6080(00)00081-2〉.
    • (2001) Neural Network , vol.14 , Issue.1 , pp. 93-105
    • Blanco, A.1    Delgado, M.2    Pegalajar, M.C.3
  • 19
    • 80052933261 scopus 로고
    • Dynamic construction of finite automata from examples using hill-climbing, in: Proceedings of the Fourth Annual Cognitive Science Conference, Ann Arbor, MI
    • M. Tomita, Dynamic construction of finite automata from examples using hill-climbing, in: Proceedings of the Fourth Annual Cognitive Science Conference, Ann Arbor, MI, 1982, pp. 105-108.
    • (1982) , pp. 105-108
    • Tomita, M.1
  • 21
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Sci. 1990, 14:179-211.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 22
    • 0006311788 scopus 로고
    • First-order recurrent neural networks and deterministic finite state automata
    • Manolios P., Fanelli R. First-order recurrent neural networks and deterministic finite state automata. Neural Comput. 1994, 6(6):1155-1173. 〈http://dx.doi.org/10.1162/neco.1994.6.6.1155〉.
    • (1994) Neural Comput. , vol.6 , Issue.6 , pp. 1155-1173
    • Manolios, P.1    Fanelli, R.2
  • 23
    • 0030286473 scopus 로고    scopus 로고
    • Constructing deterministic finite-state automata in recurrent neural networks
    • Omlin C.W., Giles C.L. Constructing deterministic finite-state automata in recurrent neural networks. J. ACM 1996, 43(6):937-972. 〈http://doi.acm.org/10.1145/235809.235811〉.
    • (1996) J. ACM , vol.43 , Issue.6 , pp. 937-972
    • Omlin, C.W.1    Giles, C.L.2
  • 24
    • 0031996475 scopus 로고    scopus 로고
    • Fuzzy finite state automata can be deterministically encoded into recurrent neural networks
    • Omlin C.W., Thornber K.K., Giles C.L. Fuzzy finite state automata can be deterministically encoded into recurrent neural networks. IEEE Trans. Fuzzy Syst. 1998, 6:76-89.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 76-89
    • Omlin, C.W.1    Thornber, K.K.2    Giles, C.L.3
  • 25
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • Watrous R.L., Kuhn G.M. Induction of finite-state languages using second-order recurrent networks. Neural Comput. 1992, 4(3):406-414. 〈http://dx.doi.org/10.1162/neco.1992.4.3.406〉.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 406-414
    • Watrous, R.L.1    Kuhn, G.M.2
  • 28
  • 29
    • 44949109048 scopus 로고    scopus 로고
    • Large scale evolutionary optimization using cooperative coevolution
    • Yang Z., Tang K., Yao X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 2008, 178(15):2985-2999. 〈http://dx.doi.org/10.1016/j.ins.2008.02.017〉.
    • (2008) Inf. Sci. , vol.178 , Issue.15 , pp. 2985-2999
    • Yang, Z.1    Tang, K.2    Yao, X.3
  • 31
    • 79959383513 scopus 로고    scopus 로고
    • Cooperative co-evolution for large scale optimization through more frequent random grouping
    • Omidvar M., Li X., Yao X. Cooperative co-evolution for large scale optimization through more frequent random grouping. IEEE Congress on Evolutionary Computation (CEC), 2010 2010, 1754-1761.
    • (2010) IEEE Congress on Evolutionary Computation (CEC), 2010 , pp. 1754-1761
    • Omidvar, M.1    Li, X.2    Yao, X.3
  • 32
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: an architecture for evolving coadapted subcomponents
    • Potter M.A., De Jong K.A. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 2000, 8(1):1-29. 〈http://dx.doi.org/10.1162/106365600568086〉.
    • (2000) Evol. Comput. , vol.8 , Issue.1 , pp. 1-29
    • Potter, M.A.1    De Jong, K.A.2
  • 33
    • 0036885602 scopus 로고    scopus 로고
    • A computationally efficient evolutionary algorithm for real-parameter optimization
    • Deb K., Anand A., Joshi D. A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 2002, 10(4):371-395.
    • (2002) Evol. Comput. , vol.10 , Issue.4 , pp. 371-395
    • Deb, K.1    Anand, A.2    Joshi, D.3
  • 34
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos P.J. Backpropagation through time: what it does and how to do it. Proc. IEEE 1990, 78(10):1550-1560.
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 35
    • 3142697802 scopus 로고    scopus 로고
    • A cooperative approach to particle swarm optimization
    • van den Bergh F., Engelbrecht A. A cooperative approach to particle swarm optimization. IEEE Trans. Evolut. Comput. 2004, 8(3):225-239.
    • (2004) IEEE Trans. Evolut. Comput. , vol.8 , Issue.3 , pp. 225-239
    • van den Bergh, F.1    Engelbrecht, A.2
  • 36


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.