-
1
-
-
0033360022
-
Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems
-
Giles C.L., Omlin C., Thornber K.K. Equivalence in knowledge representation: automata, recurrent neural networks, and dynamical fuzzy systems. Proc. IEEE 1999, 87(9):1623-1640.
-
(1999)
Proc. IEEE
, vol.87
, Issue.9
, pp. 1623-1640
-
-
Giles, C.L.1
Omlin, C.2
Thornber, K.K.3
-
2
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
3
-
-
0345195977
-
Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results
-
Scarselli F., Tsoi A.C. Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results. Neural Networks 1998, 11(1):15-37.
-
(1998)
Neural Networks
, vol.11
, Issue.1
, pp. 15-37
-
-
Scarselli, F.1
Tsoi, A.C.2
-
4
-
-
34547898032
-
Recurrent neural networks are universal approximators
-
Schaefer A., Zimmermann H. Recurrent neural networks are universal approximators. Int. J. Neural Syst. 2007, 17(4):253-263.
-
(2007)
Int. J. Neural Syst.
, vol.17
, Issue.4
, pp. 253-263
-
-
Schaefer, A.1
Zimmermann, H.2
-
5
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio Y., Simard P., Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Networks 1994, 5(2):157-166.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
6
-
-
0003061833
-
Successes and failures of backpropagation: a theoretical investigation
-
Ablex Publishing
-
Frasconi P., Gori M., Tesi A. Successes and failures of backpropagation: a theoretical investigation. Progress in Neural Networks 1993, 205-242. Ablex Publishing.
-
(1993)
Progress in Neural Networks
, pp. 205-242
-
-
Frasconi, P.1
Gori, M.2
Tesi, A.3
-
7
-
-
0033362601
-
Evolving artificial neural networks
-
Yao X. Evolving artificial neural networks. Proc. IEEE 1999, 87(9):1423-1448.
-
(1999)
Proc. IEEE
, vol.87
, Issue.9
, pp. 1423-1448
-
-
Yao, X.1
-
9
-
-
0031287711
-
Incremental evolution of complex general behavior
-
Gomez F., Mikkulainen R. Incremental evolution of complex general behavior. Adapt. Behav. 1997, 5(3-4):317-342. 〈http://dx.doi.org/10.1177/105971239700500305〉.
-
(1997)
Adapt. Behav.
, vol.5
, Issue.3-4
, pp. 317-342
-
-
Gomez, F.1
Mikkulainen, R.2
-
10
-
-
80052956480
-
-
Robust Non-Linear Control through Neuroevolution, Technical Report AI-TR-03-303, Ph.D. Thesis, Department of Computer Science, The University of Texas at Austin
-
F.J. Gomez, Robust Non-Linear Control through Neuroevolution, Technical Report AI-TR-03-303, Ph.D. Thesis, Department of Computer Science, The University of Texas at Austin, 2003.
-
(2003)
-
-
Gomez, F.J.1
-
11
-
-
44649193889
-
Accelerated neural evolution through cooperatively coevolved synapses
-
Gomez F., Schmidhuber J., Miikkulainen R. Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 2008, 9:937-965.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 937-965
-
-
Gomez, F.1
Schmidhuber, J.2
Miikkulainen, R.3
-
13
-
-
21044454599
-
Cooperative coevolution of artificial neural network ensembles for pattern classification
-
Garcia-Pedrajas N., Hervas-Martinez C., Ortiz-Boyer D. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans Evolut. Comput. 2005, 9(3):271-302.
-
(2005)
IEEE Trans Evolut. Comput.
, vol.9
, Issue.3
, pp. 271-302
-
-
Garcia-Pedrajas, N.1
Hervas-Martinez, C.2
Ortiz-Boyer, D.3
-
14
-
-
78650786701
-
An encoding scheme for cooperative coevolutionary neural networks
-
Springer-Verlag, Adelaide, Australia
-
Chandra R., Frean M., Zhang M. An encoding scheme for cooperative coevolutionary neural networks. Twenty-Third Australian Joint Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence 2010, 253-262. Springer-Verlag, Adelaide, Australia.
-
(2010)
Twenty-Third Australian Joint Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence
, pp. 253-262
-
-
Chandra, R.1
Frean, M.2
Zhang, M.3
-
15
-
-
0034876520
-
-
Scaling up fast evolutionary programming with cooperative coevolution, in: Proceedings of the 2001 Congress on Evolutionary Computation, doi:10.1109/CEC.2001.934314.
-
Y. Liu, X. Yao, Q. Zhao, T. Higuchi, Scaling up fast evolutionary programming with cooperative coevolution, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, pp. 1101-1108, doi:10.1109/CEC.2001.934314.
-
(2001)
, pp. 1101-1108
-
-
Liu, Y.1
Yao, X.2
Zhao, Q.3
Higuchi, T.4
-
16
-
-
0029768771
-
Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms
-
Salomon R. Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms. Biosystems 1996, 39(3):263-278.
-
(1996)
Biosystems
, vol.39
, Issue.3
, pp. 263-278
-
-
Salomon, R.1
-
17
-
-
33847649288
-
Training recurrent networks by Evolino
-
Schmidhuber J., Wierstra D., Gagliolo M., Gomez F. Training recurrent networks by Evolino. Neural Comput. 2007, 19(3):757-779. 〈http://dx.doi.org/10.1162/neco.2007.19.3.757〉.
-
(2007)
Neural Comput.
, vol.19
, Issue.3
, pp. 757-779
-
-
Schmidhuber, J.1
Wierstra, D.2
Gagliolo, M.3
Gomez, F.4
-
18
-
-
0035186217
-
A real-coded genetic algorithm for training recurrent neural networks
-
Blanco A., Delgado M., Pegalajar M.C. A real-coded genetic algorithm for training recurrent neural networks. Neural Network 2001, 14(1):93-105. 〈http://dx.doi.org/10.1016/S0893-6080(00)00081-2〉.
-
(2001)
Neural Network
, vol.14
, Issue.1
, pp. 93-105
-
-
Blanco, A.1
Delgado, M.2
Pegalajar, M.C.3
-
19
-
-
80052933261
-
-
Dynamic construction of finite automata from examples using hill-climbing, in: Proceedings of the Fourth Annual Cognitive Science Conference, Ann Arbor, MI
-
M. Tomita, Dynamic construction of finite automata from examples using hill-climbing, in: Proceedings of the Fourth Annual Cognitive Science Conference, Ann Arbor, MI, 1982, pp. 105-108.
-
(1982)
, pp. 105-108
-
-
Tomita, M.1
-
20
-
-
84947441969
-
Finite state automata and connectionist machines: a survey
-
Springer
-
Castaño M.A., Vidal E., Casacuberta F. Finite state automata and connectionist machines: a survey. IWANN, Lecture Notes in Computer Science 1995, vol. 930:433-440. Springer.
-
(1995)
IWANN, Lecture Notes in Computer Science
, vol.930
, pp. 433-440
-
-
Castaño, M.A.1
Vidal, E.2
Casacuberta, F.3
-
21
-
-
26444565569
-
Finding structure in time
-
Elman J.L. Finding structure in time. Cognitive Sci. 1990, 14:179-211.
-
(1990)
Cognitive Sci.
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
22
-
-
0006311788
-
First-order recurrent neural networks and deterministic finite state automata
-
Manolios P., Fanelli R. First-order recurrent neural networks and deterministic finite state automata. Neural Comput. 1994, 6(6):1155-1173. 〈http://dx.doi.org/10.1162/neco.1994.6.6.1155〉.
-
(1994)
Neural Comput.
, vol.6
, Issue.6
, pp. 1155-1173
-
-
Manolios, P.1
Fanelli, R.2
-
23
-
-
0030286473
-
Constructing deterministic finite-state automata in recurrent neural networks
-
Omlin C.W., Giles C.L. Constructing deterministic finite-state automata in recurrent neural networks. J. ACM 1996, 43(6):937-972. 〈http://doi.acm.org/10.1145/235809.235811〉.
-
(1996)
J. ACM
, vol.43
, Issue.6
, pp. 937-972
-
-
Omlin, C.W.1
Giles, C.L.2
-
24
-
-
0031996475
-
Fuzzy finite state automata can be deterministically encoded into recurrent neural networks
-
Omlin C.W., Thornber K.K., Giles C.L. Fuzzy finite state automata can be deterministically encoded into recurrent neural networks. IEEE Trans. Fuzzy Syst. 1998, 6:76-89.
-
(1998)
IEEE Trans. Fuzzy Syst.
, vol.6
, pp. 76-89
-
-
Omlin, C.W.1
Thornber, K.K.2
Giles, C.L.3
-
25
-
-
0001601299
-
Induction of finite-state languages using second-order recurrent networks
-
Watrous R.L., Kuhn G.M. Induction of finite-state languages using second-order recurrent networks. Neural Comput. 1992, 4(3):406-414. 〈http://dx.doi.org/10.1162/neco.1992.4.3.406〉.
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 406-414
-
-
Watrous, R.L.1
Kuhn, G.M.2
-
27
-
-
0003923504
-
-
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA
-
Brookshear J.G. Theory of computation: formal languages, automata, and complexity 1989, Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA.
-
(1989)
Theory of computation: formal languages, automata, and complexity
-
-
Brookshear, J.G.1
-
28
-
-
31144437540
-
Cixl2: a crossover operator for evolutionary algorithms based on population features
-
Ortiz-Boyer D., HerváMartínez C., García-Pedrajas N. Cixl2: a crossover operator for evolutionary algorithms based on population features. J. Artif. Intell. Res. 2005, 24:1-48.
-
(2005)
J. Artif. Intell. Res.
, vol.24
, pp. 1-48
-
-
Ortiz-Boyer, D.1
Hervámartínez, C.2
García-Pedrajas, N.3
-
29
-
-
44949109048
-
Large scale evolutionary optimization using cooperative coevolution
-
Yang Z., Tang K., Yao X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 2008, 178(15):2985-2999. 〈http://dx.doi.org/10.1016/j.ins.2008.02.017〉.
-
(2008)
Inf. Sci.
, vol.178
, Issue.15
, pp. 2985-2999
-
-
Yang, Z.1
Tang, K.2
Yao, X.3
-
31
-
-
79959383513
-
Cooperative co-evolution for large scale optimization through more frequent random grouping
-
Omidvar M., Li X., Yao X. Cooperative co-evolution for large scale optimization through more frequent random grouping. IEEE Congress on Evolutionary Computation (CEC), 2010 2010, 1754-1761.
-
(2010)
IEEE Congress on Evolutionary Computation (CEC), 2010
, pp. 1754-1761
-
-
Omidvar, M.1
Li, X.2
Yao, X.3
-
32
-
-
0034153728
-
Cooperative coevolution: an architecture for evolving coadapted subcomponents
-
Potter M.A., De Jong K.A. Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 2000, 8(1):1-29. 〈http://dx.doi.org/10.1162/106365600568086〉.
-
(2000)
Evol. Comput.
, vol.8
, Issue.1
, pp. 1-29
-
-
Potter, M.A.1
De Jong, K.A.2
-
33
-
-
0036885602
-
A computationally efficient evolutionary algorithm for real-parameter optimization
-
Deb K., Anand A., Joshi D. A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 2002, 10(4):371-395.
-
(2002)
Evol. Comput.
, vol.10
, Issue.4
, pp. 371-395
-
-
Deb, K.1
Anand, A.2
Joshi, D.3
-
34
-
-
0025503558
-
Backpropagation through time: what it does and how to do it
-
Werbos P.J. Backpropagation through time: what it does and how to do it. Proc. IEEE 1990, 78(10):1550-1560.
-
(1990)
Proc. IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
-
36
-
-
26844577674
-
Cooperative co-evolutionary differential evolution for function optimization
-
Springer Berlin/Heidelberg
-
Shi Y.-j., Teng H.-f., Li Z.-q. Cooperative co-evolutionary differential evolution for function optimization. Advances in Natural Computation, Lecture Notes in Computer Science 2005, vol. 3611:1080-1088. Springer Berlin/Heidelberg.
-
(2005)
Advances in Natural Computation, Lecture Notes in Computer Science
, vol.3611
, pp. 1080-1088
-
-
Shi, Y.-J.1
Teng, H.-F.2
Li, Z.-Q.3
|