메뉴 건너뛰기




Volumn , Issue , 2006, Pages 271-275

Training and extraction of fuzzy finite state automata in recurrent neural networks

Author keywords

Fuzzy finite state automata; Knowledge extraction; Recurrent neural network; Trakhtenbrot Barzdin algorithm

Indexed keywords

ARTIFICIAL INTELLIGENCE; EXTRACTIVE METALLURGY; FINITE AUTOMATA; FUZZY NEURAL NETWORKS; INTELLIGENT CONTROL; LEARNING SYSTEMS; NEURAL NETWORKS; REINFORCEMENT LEARNING; ROBOTS; TRANSLATION (LANGUAGES); VEGETATION;

EID: 56349143019     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (20)
  • 1
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • A.J Robinson, An application of recurrent nets to phone probability estimation, IEEE transactions on Neural Networks, 5(2), 1994, 298-305.
    • (1994) IEEE transactions on Neural Networks , vol.5 , Issue.2 , pp. 298-305
    • Robinson, A.J.1
  • 4
    • 0033360022 scopus 로고    scopus 로고
    • Equivalence in Knowledge Representation: Automata, Recurrent Neural Networks, and dynamical Systems
    • C. Lee Giles, C.W Omlin & K. Thornber, Equivalence in Knowledge Representation: Automata, Recurrent Neural Networks, and dynamical Systems, Proc. of the IEEE, 87(9), 1999, 1623-1640
    • (1999) Proc. of the IEEE , vol.87 , Issue.9 , pp. 1623-1640
    • Lee Giles, C.1    Omlin, C.W.2    Thornber, K.3
  • 5
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, Finding structure in time, Cognitive Science, 14, 1990, 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 6
    • 0000032536 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • California, USA
    • R. L. Watrous & G. M. Kuhn, Induction of finite-state languages using second-order recurrent networks, Proc. of Advances in Neural Information Systems, California, USA, 1992, 309-316.
    • (1992) Proc. of Advances in Neural Information Systems , pp. 309-316
    • Watrous, R.L.1    Kuhn, G.M.2
  • 7
  • 10
    • 33744665643 scopus 로고
    • Fuzzy adaptive recurrent counter propagation neural networks: A tool for efficient implementation of qualitative models of dynamic processes
    • F. E. Cellier & Y. D. Pan, Fuzzy adaptive recurrent counter propagation neural networks: A tool for efficient implementation of qualitative models of dynamic processes, J. Syst. Eng., 5(4), 1995, 207-222.
    • (1995) J. Syst. Eng , vol.5 , Issue.4 , pp. 207-222
    • Cellier, F.E.1    Pan, Y.D.2
  • 11
    • 0029376281 scopus 로고
    • Structural properties of gradient recurrent high-order neural networks
    • E. B. Kosmatopoulos & M. A. Christodoulou, Structural properties of gradient recurrent high-order neural networks, IEEE Trans. Circuits Syst., 42, 1995, 592-603.
    • (1995) IEEE Trans. Circuits Syst , vol.42 , pp. 592-603
    • Kosmatopoulos, E.B.1    Christodoulou, M.A.2
  • 13
    • 0002811290 scopus 로고    scopus 로고
    • Recurrent neural networks for approximation of fuzzy dynamical systems
    • E. B. Kosmatopoulos and M. A. Christodoulou, Recurrent neural networks for approximation of fuzzy dynamical systems, Int. J. Intell. Control Syst., 1(2), 1996, 223-233.
    • (1996) Int. J. Intell. Control Syst , vol.1 , Issue.2 , pp. 223-233
    • Kosmatopoulos, E.B.1    Christodoulou, M.A.2
  • 14
    • 0031996475 scopus 로고    scopus 로고
    • Fuzzy finite state automata can be deterministically encoded into recurrent neural networks
    • C. W. Omlin, K. K. Thornber, & C. L. Giles, Fuzzy finite state automata can be deterministically encoded into recurrent neural networks, IEEE Trans. Fuzzy Syst., 6, 1998, 76-89.
    • (1998) IEEE Trans. Fuzzy Syst , vol.6 , pp. 76-89
    • Omlin, C.W.1    Thornber, K.K.2    Giles, C.L.3
  • 15
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: A taxonomy and review
    • H. Jacobsson, Rule extraction from recurrent neural networks: A taxonomy and review, Neural Computation, 17 (6), 2005,1223-1263.
    • (2005) Neural Computation , vol.17 , Issue.6 , pp. 1223-1263
    • Jacobsson, H.1
  • 16
    • 0003163366 scopus 로고
    • Induction of discrete state-machine by stabalising a continuous recurrent neural network using clustering
    • S. Das & R. Das, Induction of discrete state-machine by stabalising a continuous recurrent neural network using clustering. Journal of Computer Science and Informatics, 21(2), 1991, 35-40.
    • (1991) Journal of Computer Science and Informatics , vol.21 , Issue.2 , pp. 35-40
    • Das, S.1    Das, R.2
  • 19
    • 0030286473 scopus 로고    scopus 로고
    • Extraction of rules from discrete time recurrent neural networks
    • C. Omlin & C. L. Giles, Extraction of rules from discrete time recurrent neural networks, Journal of the ACM, 43(6), 1996, 937-972.
    • (1996) Journal of the ACM , vol.43 , Issue.6 , pp. 937-972
    • Omlin, C.1    Giles, C.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.