메뉴 건너뛰기




Volumn 59, Issue 10, 2011, Pages 4606-4619

Rao-Blackwellization of particle Markov chain monte carlo methods using forward filtering backward sampling

Author keywords

Computational efficiency; Monte Carlo methods; nonlinear filters; particle filters; state estimation

Indexed keywords

COMPUTATION TIME; CONDITIONAL DISTRIBUTION; FUNCTIONALS; MARKOV CHAIN MONTE CARLO; MARKOV CHAIN MONTE CARLO METHOD; METROPOLIS-HASTINGS STEP; MONTE CARLO; NON-GAUSSIAN; NONLINEAR FILTERS; PARTICLE FILTER; PARTICLE FILTERS; RAO-BLACKWELLIZATION; STATE TRAJECTORY; STATE-SPACE MODELS; STATIONARY DISTRIBUTION;

EID: 80052890727     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2011.2161296     Document Type: Article
Times cited : (24)

References (25)
  • 2
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • L. E. Baum, T. P. Petrie, G. Soules, and N. Weiss, "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains," Ann. Math. Statist., vol. 41, pp. 164-171, 1970.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.P.2    Soules, G.3    Weiss, N.4
  • 3
    • 43949174023 scopus 로고
    • Bayesian estimation of hidden Markov chains: A stochastic implementation
    • C. P. Robert, G. Celeux, and J. Diebolt, "Bayesian estimation of hidden Markov chains: A stochastic implementation," Statist. Probab. Lett., vol. 16, pp. 77-83, 1993.
    • (1993) Statist. Probab. Lett. , vol.16 , pp. 77-83
    • Robert, C.P.1    Celeux, G.2    Diebolt, J.3
  • 4
    • 0036489069 scopus 로고    scopus 로고
    • Bayesian methods for hidden Markov models: Recursive computing in the 21st century
    • S. L. Scott, "Bayesian methods for hidden Markov models: Recursive computing in the 21st century," J. Amer. Statist. Assoc., vol. 97, pp. 337-351, 2002.
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 337-351
    • Scott, S.L.1
  • 5
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • N. Shephard and M. Pitt, "Likelihood analysis of non-Gaussian measurement time series," Biometrika, vol. 84, pp. 653-667, 2004.
    • (2004) Biometrika , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.2
  • 6
    • 0003107701 scopus 로고    scopus 로고
    • Calculating posterior distributions and modal estimates in Markov mixture models
    • DOI 10.1016/0304-4076(95)01770-4
    • S. Chib, "Calculating posterior distributions and modal estimates in Markov mixture models," J. Econometr., vol. 75, pp. 79-97, 1996. (Pubitemid 126372907)
    • (1996) Journal of Econometrics , vol.75 , Issue.1 , pp. 79-97
    • Chib, S.1
  • 8
    • 80052904683 scopus 로고    scopus 로고
    • SequentialMonte CarloMethods in Practice, A. Doucet,N. De Freitas, and N. Gordon, Eds. New York: Springer
    • SequentialMonte CarloMethods in Practice, A. Doucet,N. De Freitas, and N. Gordon, Eds. New York: Springer, 2001.
    • (2001)
  • 10
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte-Carlo sampling methods for Bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu, "On sequential Monte-Carlo sampling methods for Bayesian filtering," Statist. Comput., vol. 10, pp. 197-208, 2000.
    • (2000) Statist. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 11
    • 82655181336 scopus 로고    scopus 로고
    • Sequential Monte Carlo smoothing for general state space hidden Markov models
    • R. Douc, A. Garivier, E. Moulines, and J. Olsson, "Sequential Monte Carlo smoothing for general state space hidden Markov models," Ann. Appl. Probab., 2011.
    • Ann. Appl. Probab. , vol.2011
    • Douc, R.1    Garivier, A.2    Moulines, E.3    Olsson, J.4
  • 12
    • 77953523599 scopus 로고    scopus 로고
    • Particle Markov chain Monte Carlo methods (with discussion)
    • C. Andrieu, A. Doucet, and R. Holenstein, "Particle Markov chain Monte Carlo methods (with discussion)," J. Roy. Statist. Soc. B, vol. 72, pp. 269-342, 2010.
    • (2010) J. Roy. Statist. Soc. B , vol.72 , pp. 269-342
    • Andrieu, C.1    Doucet, A.2    Holenstein, R.3
  • 14
    • 31344442144 scopus 로고    scopus 로고
    • Monte Carlo smoothing for nonlinear time series
    • S. J. Godsill, A. Doucet, and M. West, "Monte Carlo smoothing for nonlinear time series," J. Amer. Statist. Assoc, vol. 50, pp. 438-449, 2004.
    • (2004) J. Amer. Statist. Assoc , vol.50 , pp. 438-449
    • Godsill, S.J.1    Doucet, A.2    West, M.3
  • 15
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • M. K. Pitt and N. Shephard, "Filtering via simulation: Auxiliary particle filters," J. Amer. Statist. Assoc., vol. 94, pp. 590-599, 1999.
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 590-599
    • Pitt, M.K.1    Shephard, N.2
  • 16
    • 78650790756 scopus 로고    scopus 로고
    • Optimality of the auxiliary particle filter
    • R. Douc, E. Moulines, and J. Olsson, "Optimality of the auxiliary particle filter," Probab. Math. Statist., vol. 29, pp. 1-28, 2009.
    • (2009) Probab. Math. Statist. , vol.29 , pp. 1-28
    • Douc, R.1    Moulines, E.2    Olsson, J.3
  • 17
    • 80052902328 scopus 로고    scopus 로고
    • Consistency of themaximumlikelihood estimator for general hiddenMarkovmodels
    • R. Douc, E. Moulines, J. Olsson, and R. van Handel, "Consistency of themaximumlikelihood estimator for general hiddenMarkovmodels," Ann. Statist., vol. 39, pp. 474-513, 2011.
    • Ann. Statist. , vol.39 , Issue.2011 , pp. 474-513
    • Douc, R.1    Moulines, E.2    Olsson, J.3    Van Handel, R.4
  • 18
    • 77952840924 scopus 로고    scopus 로고
    • A sequential smoothing algorithm with linear computational cost
    • P. Fearnhead, D. Wyncoll, and J. Tawn, "A sequential smoothing algorithm with linear computational cost," Biometrika, vol. 97, pp. 447-464, 2010.
    • (2010) Biometrika , vol.97 , pp. 447-464
    • Fearnhead, P.1    Wyncoll, D.2    Tawn, J.3
  • 19
    • 84890736685 scopus 로고    scopus 로고
    • General state space Markov chains and MCMC algorithms
    • G. O. Roberts and J. S. Rosenthal, "General state space Markov chains and MCMC algorithms," Probab. Surv., vol. 1, pp. 20-71, 2004.
    • (2004) Probab. Surv. , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 23
    • 84950459387 scopus 로고
    • Non-Gaussian state space modeling of nonstationary time series
    • G. Kitagawa, "Non-Gaussian state space modeling of nonstationary time series," J. Amer. Statist. Assoc, vol. 82, pp. 1023-1063, 1987.
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 1023-1063
    • Kitagawa, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.