메뉴 건너뛰기




Volumn , Issue , 2010, Pages 177-188

Formal concept sampling for counting and threshold-free local pattern mining

Author keywords

[No Author keywords available]

Indexed keywords

FORMAL CONCEPT ANALYSIS;

EID: 80052655684     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.16     Document Type: Conference Paper
Times cited : (41)

References (27)
  • 1
    • 12244313034 scopus 로고    scopus 로고
    • Approximating a collection of frequent sets
    • ACM
    • Foto N. Afrati, Aristides Gionis, and Heikki Mannila. Approximating a collection of frequent sets. In KDD, pages 12-19. ACM, 2004.
    • (2004) KDD , pp. 12-19
    • Afrati, F.N.1    Gionis, A.2    Mannila, H.3
  • 3
    • 84867817851 scopus 로고    scopus 로고
    • Mining minimal non-redundant association rules using frequent closed item-sets
    • Springer
    • Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, and Lotfi Lakhal. Mining minimal non-redundant association rules using frequent closed item-sets. In Computational Logic - CL 2000, pages 972-986. Springer, 2000.
    • (2000) Computational Logic - CL 2000 , pp. 972-986
    • Bastide, Y.1    Pasquier, N.2    Taouil, R.3    Stumme, G.4    Lakhal, L.5
  • 4
    • 23044527560 scopus 로고    scopus 로고
    • Detecting group differences: Mining contrast sets
    • Stephen D. Bay and Michael J. Pazzani. Detecting group differences: Mining contrast sets. Data Min. Knowl. Discov., 5(3):213-246, 2001.
    • (2001) Data Min. Knowl. Discov. , vol.5 , Issue.3 , pp. 213-246
    • Bay, S.D.1    Pazzani, M.J.2
  • 5
    • 67049119060 scopus 로고    scopus 로고
    • A randomized approach for approximating the number of frequent sets
    • IEEE Computer Society
    • Mario Boley and Henrik Grosskreutz. A randomized approach for approximating the number of frequent sets. In ICDM, pages 43-52. IEEE Computer Society, 2008.
    • (2008) ICDM , pp. 43-52
    • Boley, M.1    Grosskreutz, H.2
  • 6
    • 70350633055 scopus 로고    scopus 로고
    • Non-redundant subgroup discovery using a closure system
    • Springer
    • Mario Boley and Henrik Grosskreutz. Non-redundant subgroup discovery using a closure system. In ECML/PKDD (2), pages 179-194. Springer, 2009.
    • (2009) ECML/PKDD (2) , pp. 179-194
    • Boley, M.1    Grosskreutz, H.2
  • 7
    • 65449137151 scopus 로고    scopus 로고
    • Detecting privacy leaks using corpus-based association rules
    • ACM
    • Richard Chow, Philippe Golle, and Jessica Staddon. Detecting privacy leaks using corpus-based association rules. In KDD 2008, pages 893-901. ACM, 2008.
    • (2008) KDD 2008 , pp. 893-901
    • Chow, R.1    Golle, P.2    Staddon, J.3
  • 8
    • 21144434561 scopus 로고    scopus 로고
    • The relative complexity of approximate counting problems
    • Martin Dyer, Leslie Ann Goldberg, Catherine Green-hill, and Mark Jerrum. The relative complexity of approximate counting problems. Algorithmica, 38(3):471-500, 2004.
    • (2004) Algorithmica , vol.38 , Issue.3 , pp. 471-500
    • Dyer, M.1    Goldberg, L.A.2    Catherine, G.-H.3    Jerrum, M.4
  • 13
    • 49749107567 scopus 로고    scopus 로고
    • Origami: Mining representative orthogonal graph patterns
    • IEEE Computer Society
    • Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, Jérémy Besson, and Mohammed Javeed Zaki. Origami: Mining representative orthogonal graph patterns. In ICDM, pages 153-162. IEEE Computer Society, 2007.
    • (2007) ICDM , pp. 153-162
    • Hasan, M.A.1    Chaoji, V.2    Salem, S.3    Besson, J.4    Zaki, M.J.5
  • 14
    • 77956337225 scopus 로고    scopus 로고
    • Musk: Uniform sampling of k maximal patterns
    • SIAM
    • Mohammad Al Hasan and Mohammed Javeed Zaki. Musk: Uniform sampling of k maximal patterns. In SDM, pages 650-661. SIAM, 2009.
    • (2009) SDM , pp. 650-661
    • Hasan, M.A.1    Zaki, M.J.2
  • 15
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57(1):97-109, 1970.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 16
    • 52349115959 scopus 로고    scopus 로고
    • Perfect simulation with exponential tails on the running time
    • Mark Huber. Perfect simulation with exponential tails on the running time. Random Struct. Alg., 33(1):29-43, 2008.
    • (2008) Random Struct. Alg. , vol.33 , Issue.1 , pp. 29-43
    • Huber, M.1
  • 19
    • 78149297786 scopus 로고    scopus 로고
    • Learning rules for anomaly detection of hostile network traffic
    • Washington, DC, USA IEEE Computer Society
    • Matthew V. Mahoney and Philip K. Chan. Learning rules for anomaly detection of hostile network traffic. In ICDM, page 601, Washington, DC, USA, 2003. IEEE Computer Society.
    • (2003) ICDM , pp. 601
    • Mahoney, M.V.1    Chan, P.K.2
  • 20
    • 0033687894 scopus 로고    scopus 로고
    • Traversing itemset lattice with statistical metric pruning
    • ACM
    • Shinichi Morishita and Jun Sese. Traversing itemset lattice with statistical metric pruning. In PODS, pages 226-236. ACM, 2000.
    • (2000) PODS , pp. 226-236
    • Morishita, S.1    Sese, J.2
  • 22
    • 33644645085 scopus 로고    scopus 로고
    • Rapidly mixing Markov chains with applications in computer science and physics
    • Dana Randall. Rapidly mixing markov chains with applications in computer science and physics. Computing in Science and Engineering, 8(2):30-41, 2006.
    • (2006) Computing in Science and Engineering , vol.8 , Issue.2 , pp. 30-41
    • Randall, D.1
  • 23
    • 77956531939 scopus 로고    scopus 로고
    • Maximum common subgraph mining: A fast and effective approach towards feature generation
    • Leander Schietgat, Fabrizio Costa, Jan Ramon, and Luc De Raedt. Maximum common subgraph mining: A fast and effective approach towards feature generation. In MLG, 2009.
    • (2009) MLG
    • Schietgat, L.1    Costa, F.2    Ramon, J.3    Raedt, L.D.4
  • 24
    • 19944376126 scopus 로고    scopus 로고
    • Tfp: An efficient algorithm for mining top-k frequent closed itemsets
    • IEEE Transactions on May
    • J. Wang, J. Han, Y. Lu, and P. Tzvetkov. Tfp: an efficient algorithm for mining top-k frequent closed itemsets. Knowledge and Data Engineering, IEEE Transactions on, 17(5):652-663, May 2005.
    • (2005) Knowledge and Data Engineering , vol.17 , Issue.5 , pp. 652-663
    • Wang, J.1    Han, J.2    Lu, Y.3    Tzvetkov, P.4
  • 25
    • 17744362879 scopus 로고    scopus 로고
    • On the complexity of finding emerging patterns
    • Lusheng Wang, Hao Zhao, Guozhu Dong, and Jianping Li. On the complexity of finding emerging patterns. Theoretical Computer Science, 335(1):15-27, 2005.
    • (2005) Theoretical Computer Science , vol.335 , Issue.1 , pp. 15-27
    • Wang, L.1    Zhao, H.2    Dong, G.3    Li, J.4
  • 26
    • 33745458995 scopus 로고    scopus 로고
    • Mining compressed frequent-pattern sets
    • VLDB Endowment
    • Dong Xin, Jiawei Han, Xifeng Yan, and Hong Cheng. Mining compressed frequent-pattern sets. In VLDB, pages 709-720. VLDB Endowment, 2005.
    • (2005) VLDB , pp. 709-720
    • Xin, D.1    Han, J.2    Yan, X.3    Cheng, H.4
  • 27
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search
    • ACM
    • Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant graph patterns by leap search. In SIGMOD, pages 433-444. ACM, 2008.
    • (2008) SIGMOD , pp. 433-444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.