메뉴 건너뛰기




Volumn 6328 LNCS, Issue PART 1, 2010, Pages 7-15

Improved nonlinear PCA based on RBF networks and principal curves

Author keywords

[No Author keywords available]

Indexed keywords

FAST RECURSIVE ALGORITHMS; HIDDEN LAYERS; NONLINEAR PCA; OPTIMAL TOPOLOGIES; OUTPUT LAYER; PRINCIPAL COMPONENTS; PRINCIPAL CURVE; RBF NETWORK; SIMULATION RESULT; THREE-LAYER; NEURAL NETWORK (NN);

EID: 78649586262     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15621-2_2     Document Type: Conference Paper
Times cited : (3)

References (12)
  • 1
    • 0034130478 scopus 로고    scopus 로고
    • The application of principal component analysis and kernel density estimation to enhance process monitoring
    • DOI 10.1016/S0967-0661(99)00191-4, PII S0967066199001914
    • Chen, Q., Wyne, R., Goulding, P.R., Sandoz, D.J.: The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Engineering Practice 8(5), 531-543 (2000) (Pubitemid 30354904)
    • (2000) Control Engineering Practice , vol.8 , Issue.5 , pp. 531-543
    • Chen, Q.1    Wynne, R.J.2    Goulding, P.3    Sandoz, D.4
  • 2
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong, D., McAvoy, T.J.: Nonlinear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering 20(1), 65-78 (1996)
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 4
    • 0033611749 scopus 로고    scopus 로고
    • Non-linear principal components analysis using genetic programming
    • DOI 10.1016/S0098-1354(98)00284-1, PII S0098135498002841
    • Hiden, H., Willis, M., Tham, M., Montague, G.: Nonlinear principal components analysis using genetic programming. Computers and Chemical Engineering 23(3), 413-425 (1999) (Pubitemid 29179698)
    • (1999) Computers and Chemical Engineering , vol.23 , Issue.3 , pp. 413-425
    • Hiden, H.G.1    Willis, M.J.2    Tham, M.T.3    Montague, G.A.4
  • 5
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504-507 (2006)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 6
    • 0003658046 scopus 로고
    • Wiley Series in Probability and Mathematical Statistics. John Wiley, New York
    • Jackson, J.E.: A Users Guide to Principal Components. Wiley Series in Probability and Mathematical Statistics. John Wiley, New York (1991)
    • (1991) A Users Guide to Principal Components
    • Jackson, J.E.1
  • 7
    • 0034334827 scopus 로고    scopus 로고
    • Nonlinear principal components analysis with application to process fault detection
    • Jia, F., Martin, E.B., Morris, A.J.: Nonlinear principal components analysis with application to process fault detection. International Journal of Systems Science 31(11), 1473-1487 (2000)
    • (2000) International Journal of Systems Science , vol.31 , Issue.11 , pp. 1473-1487
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 8
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37(3), 233-243 (1991)
    • (1991) AIChE Journal , vol.37 , Issue.3 , pp. 233-243
    • Kramer, M.A.1
  • 10
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • DOI 10.1016/j.automatica.2006.03.004, PII S0005109806001208
    • Li, K., Peng, J., Bai, E.: A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 42(7), 1189-1197 (2006) (Pubitemid 43767490)
    • (2006) Automatica , vol.42 , Issue.7 , pp. 1189-1197
    • Li, K.1    Peng, J.-X.2    Bai, E.-W.3
  • 11
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimizing neural network inputs
    • Tan, S., Mavrovouniotis, M.L.: Reducing data dimensionality through optimizing neural network inputs. AIChE Journal 41(6), 14711480 (1995)
    • (1995) AIChE Journal , vol.41 , Issue.6 , pp. 14711480
    • Tan, S.1    Mavrovouniotis, M.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.