메뉴 건너뛰기




Volumn 6913 LNAI, Issue PART 3, 2011, Pages 553-568

Learning from inconsistent and unreliable annotators by a Gaussian mixture model and bayesian information criterion

Author keywords

Bayesian information criterion; data dependent experts; Gaussian mixture model; multiple noisy experts

Indexed keywords

BAYESIAN INFORMATION CRITERION; DATA-DEPENDENT EXPERTS; EMOTIONAL SPEECH; GAUSSIAN COMPONENTS; GAUSSIAN MIXTURE MODEL; MACHINE LEANING; MAJORITY VOTING; MAXIMUM A POSTERIORS; MULTIPLE NOISY EXPERTS; PERFORMANCE IMPROVEMENTS; PREDICTION TASKS; PROBABILISTIC APPROACHES;

EID: 80052420653     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-23808-6_36     Document Type: Conference Paper
Times cited : (18)

References (27)
  • 1
    • 80052421938 scopus 로고    scopus 로고
    • Amazon Mechanical Turk, http://www.mturk.com
  • 2
    • 85153964878 scopus 로고
    • Inferring ground truth from subjective labelling of venus images
    • Smyth, P., Fayyad, U.M., Burl, M.C., Perona, P., Baldi, P.: Inferring ground truth from subjective labelling of venus images. In: NIPS, pp. 1085-1092 (1994)
    • (1994) NIPS , pp. 1085-1092
    • Smyth, P.1    Fayyad, U.M.2    Burl, M.C.3    Perona, P.4    Baldi, P.5
  • 3
    • 85156212629 scopus 로고    scopus 로고
    • Learning with multiple labels
    • Jin, R., Ghahramani, Z.: Learning with multiple labels. In: NIPS, pp. 897-904 (2002)
    • (2002) NIPS , pp. 897-904
    • Jin, R.1    Ghahramani, Z.2
  • 4
    • 65449144451 scopus 로고    scopus 로고
    • Get another label? Improving data quality and data mining using multiple, noisy labelers
    • Sheng, V.S., Provost, F.J., Ipeirotis, P.G.: Get another label? Improving data quality and data mining using multiple, noisy labelers. In: KDD, pp. 614-622 (2008)
    • (2008) KDD , pp. 614-622
    • Sheng, V.S.1    Provost, F.J.2    Ipeirotis, P.G.3
  • 5
    • 70349254685 scopus 로고    scopus 로고
    • Proactive learning: Cost-sensitive active learning with multiple imperfect oracles
    • Donmez, P., Carbonell, J.G.: Proactive learning: cost-sensitive active learning with multiple imperfect oracles. In: CIKM, pp. 619-628 (2008)
    • (2008) CIKM , pp. 619-628
    • Donmez, P.1    Carbonell, J.G.2
  • 6
    • 70350681833 scopus 로고    scopus 로고
    • Efficiently learning the accuracy of labeling sources for selective sampling
    • Donmez, P., Carbonell, J.G., Schneider, J.: Efficiently learning the accuracy of labeling sources for selective sampling. In: KDD, pp. 259-268 (2009)
    • (2009) KDD , pp. 259-268
    • Donmez, P.1    Carbonell, J.G.2    Schneider, J.3
  • 8
    • 84867409394 scopus 로고    scopus 로고
    • Vox populi: Collecting high-quality labels from a crowd
    • Dekel, O., Shamir, O.: Vox populi: Collecting high-quality labels from a crowd. In: COLT (2009)
    • (2009) COLT
    • Dekel, O.1    Shamir, O.2
  • 9
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast - But is it good? Evaluating non-expert annotations for natural language tasks
    • Snow, R., O'Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast - but is it good? Evaluating non-expert annotations for natural language tasks. In: EMNLP, pp. 254-263 (2008)
    • (2008) EMNLP , pp. 254-263
    • Snow, R.1    O'Connor, B.2    Jurafsky, D.3    Ng, A.Y.4
  • 12
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
    • Whitehill J., Ruvolo P., Wu T., Bergsma J., Movellan J.: Whose vote should count more: optimal integration of labels from labelers of unknown expertise. In NIPS (2009)
    • (2009) NIPS
    • Whitehill, J.1    Ruvolo, P.2    Wu, T.3    Bergsma, J.4    Movellan, J.5
  • 14
    • 79959838026 scopus 로고    scopus 로고
    • Data-dependent evaluator modeling and its application to emotional valence classification from speech
    • Audhkhasi K., Narayanan S.: Data-dependent evaluator modeling and its application to emotional valence classification from speech. In: InterSpeech, pp. 2366-2369 (2010)
    • (2010) InterSpeech , pp. 2366-2369
    • Audhkhasi, K.1    Narayanan, S.2
  • 15
    • 67049158342 scopus 로고    scopus 로고
    • How to get the most out of your curation effort
    • Rzhetsky, A., Shatkay, H., Wilbur, W.J.: How to get the most out of your curation effort. PLoS. Comput. Biol. 5(5), e1000391 (2009)
    • (2009) PLoS. Comput. Biol. , vol.5 , Issue.5
    • Rzhetsky, A.1    Shatkay, H.2    Wilbur, W.J.3
  • 18
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821 (1993)
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 21
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J., 578-588 (1998)
    • (1998) Comput. J. , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 23
    • 33745191649 scopus 로고    scopus 로고
    • An articulatory study of emotional speech production
    • Lee, S., Yildirim, S., Kazemzadeh, A., Narayanan, S.: An articulatory study of emotional speech production. In: Eurospeech, pp. 497-500 (2005)
    • (2005) Eurospeech , pp. 497-500
    • Lee, S.1    Yildirim, S.2    Kazemzadeh, A.3    Narayanan, S.4
  • 24
    • 80052418082 scopus 로고    scopus 로고
    • VOICEBOX, http://www.ee.imperial.ac.uk/hp/staff/dmb/voicebox/voicebox. html
    • VOICEBOX
  • 26
    • 74249104442 scopus 로고    scopus 로고
    • Assessment of disorder predictions in CASP8
    • Noivirt-Brik, O., Prilusky, J., Sussman, J.L.: Assessment of disorder predictions in CASP8. Proteins 77(suppl. 9), 210-216 (2009)
    • (2009) Proteins , vol.77 , Issue.SUPPL. 9 , pp. 210-216
    • Noivirt-Brik, O.1    Prilusky, J.2    Sussman, J.L.3
  • 27


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.