메뉴 건너뛰기




Volumn 30, Issue 7, 2011, Pages 914-935

Adaptive compression for 3D laser data

Author keywords

3D mapping; Gaussian Process; Mobile robotics; Non stationary; Online representation; Range sensing

Indexed keywords

3-D MAPPING; GAUSSIAN PROCESSES; MOBILE ROBOTIC; NONSTATIONARY; ONLINE REPRESENTATION; RANGE SENSING;

EID: 80052193909     PISSN: 02783649     EISSN: 17413176     Source Type: Journal    
DOI: 10.1177/0278364911403019     Document Type: Conference Paper
Times cited : (24)

References (38)
  • 1
    • 0001707631 scopus 로고
    • Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions
    • Ansley C and Kohn R (1985) Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions. The Annals of Statistics 13: 1286-1316.
    • (1985) The Annals of Statistics , vol.13 , pp. 1286-1316
    • Ansley, C.1    Kohn, R.2
  • 3
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • Csató L and Opper M (2002) Sparse on-line Gaussian processes. Neural Computation 14: 641-668.
    • (2002) Neural Computation , vol.14 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 6
    • 0242662009 scopus 로고    scopus 로고
    • Constructing 3D city models by merging aerial and ground views
    • Früh C and Zakhor A (2003) Constructing 3D city models by merging aerial and ground views. IEEE Computer Graphics Applications 23: 52-61.
    • (2003) IEEE Computer Graphics Applications , vol.23 , pp. 52-61
    • Früh, C.1    Zakhor, A.2
  • 8
    • 0038683351 scopus 로고    scopus 로고
    • Learning compact 3D models of indoor and outdoor environment with a mobile robot
    • Hähnel D, Burgard W and Thrun S (2003) Learning compact 3D models of indoor and outdoor environment with a mobile robot. Robotics and Autonomous Systems 44: 15-27.
    • (2003) Robotics and Autonomous Systems , vol.44 , pp. 15-27
    • Hähnel, D.1    Burgard, W.2    Thrun, S.3
  • 10
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
    • Krause A, Singh A and Guestrin C (2008) Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. The Journal of Machine Learning Research 9: 235-284. (Pubitemid 351469021)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 13
    • 0003858319 scopus 로고    scopus 로고
    • Technical Report CMU-RI-TR 96-06, Robotics Institute, Carnegie Mellon University
    • Martin MC and Moravec H (1996) Robot Evidence Grids. Technical Report CMU-RI-TR-96-06, Robotics Institute, Carnegie Mellon University.
    • (1996) Robot Evidence Grids
    • Martin, M.C.1    Moravec, H.2
  • 14
    • 0015764255 scopus 로고
    • The intrinsic
    • random functions and their applications
    • Matheron G (1973) The intrinsic random functions and their applications. Advances in Applied Probability 5: 439-468.
    • (1973) Advances in Applied Probability , vol.5 , pp. 439-468
    • Matheron, G.1
  • 17
    • 0013521749 scopus 로고
    • Monte Carlo is fundamentally unsound
    • O'Hagan A (1987) Monte Carlo is fundamentally unsound. The Statistician 36: 247-249.
    • (1987) The Statistician , vol.36 , pp. 247-249
    • O'Hagan, A.1
  • 25
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • Quiñonero-Candela J and Rasmussen C (2005) A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research 6: 1939-1959. (Pubitemid 41798128)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1939-1959
    • Quinonero-Candela, J.1    Rasmussen, C.E.2
  • 28
    • 84949236475 scopus 로고    scopus 로고
    • Efficient variants of the ICP algorithm
    • Rusinkiewicz S and Levoy M (2001) Efficient variants of the ICP algorithm. In Proceedings of 3DIM, pp. 145-152.
    • (2001) Proceedings of 3DIM , pp. 145-152
    • Rusinkiewicz, S.1    Levoy, M.2
  • 31
    • 33745987673 scopus 로고    scopus 로고
    • Fast forward selection to speed up sparse Gaussian process regression
    • Seeger M, Williams C and Lawrence N (2003) Fast forward selection to speed up sparse Gaussian process regression. In Workshop on AI and Statistics, volume 9.
    • (2003) Workshop on AI and Statistics , vol.9
    • Seeger, M.1    Williams, C.2    Lawrence, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.