|
Volumn , Issue , 2010, Pages 2677-2682
|
Using model knowledge for learning inverse dynamics
|
Author keywords
[No Author keywords available]
|
Indexed keywords
GAUSSIAN PROCESS REGRESSION;
INVERSE DYNAMICS;
LEARNING APPROACH;
LEARNING MODELS;
LEARNING PERFORMANCE;
LEARNING SPEED;
MEAN FUNCTIONS;
MODEL APPROXIMATIONS;
MODEL LEARNING;
NON-PARAMETRIC;
PHYSICAL MODEL;
PHYSICS-BASED MODELING;
PRIOR KNOWLEDGE;
REGRESSION METHOD;
RIGIDBODY DYNAMICS;
ROBOT SYSTEM;
SAMPLED DATA;
SEMIPARAMETRIC;
SEMIPARAMETRIC MODELS;
STATE SPACE;
TRACKING CONTROLS;
MODELS;
REGRESSION ANALYSIS;
ROBOTICS;
ROBOTS;
DYNAMICS;
|
EID: 77955827116
PISSN: 10504729
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/ROBOT.2010.5509858 Document Type: Conference Paper |
Times cited : (184)
|
References (12)
|