-
2
-
-
0015788083
-
Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model
-
Rall W., Rinzel J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 1973, 13:648-687.
-
(1973)
Biophys. J.
, vol.13
, pp. 648-687
-
-
Rall, W.1
Rinzel, J.2
-
3
-
-
0033083763
-
Linear summation of excitatory inputs by CA1 pyramidal neurons
-
Cash S., Yuste R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 1999, 22:383-394.
-
(1999)
Neuron
, vol.22
, pp. 383-394
-
-
Cash, S.1
Yuste, R.2
-
4
-
-
77956651628
-
The single dendritic branch as a fundamental functional unit in the nervous system
-
Branco T., Hausser M. The single dendritic branch as a fundamental functional unit in the nervous system. Curr. Opin. Neurobiol. 2010, 20:494-502.
-
(2010)
Curr. Opin. Neurobiol.
, vol.20
, pp. 494-502
-
-
Branco, T.1
Hausser, M.2
-
5
-
-
77951437255
-
Branching out: mechanisms of dendritic arborization
-
Jan Y.-N., Jan L.Y. Branching out: mechanisms of dendritic arborization. Nat. Rev. Neurosci. 2010, 11:316-328.
-
(2010)
Nat. Rev. Neurosci.
, vol.11
, pp. 316-328
-
-
Jan, Y.-N.1
Jan, L.Y.2
-
6
-
-
77950483969
-
Nociceptors: a phylogenetic view
-
Smith E.S., Lewin G.R. Nociceptors: a phylogenetic view. J. Comp. Physiol. A 2009, 195:1089-1106.
-
(2009)
J. Comp. Physiol. A
, vol.195
, pp. 1089-1106
-
-
Smith, E.S.1
Lewin, G.R.2
-
7
-
-
77953259258
-
The fusogen EFF-1 controls sculpting of mechanosensory dendrites
-
Oren-Suissa M., et al. The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 2010, 328:1285-1288.
-
(2010)
Science
, vol.328
, pp. 1285-1288
-
-
Oren-Suissa, M.1
-
8
-
-
77954145287
-
Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors
-
Chatzigeorgiou M., et al. Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat. Neurosci. 2010, 13:861-868.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 861-868
-
-
Chatzigeorgiou, M.1
-
9
-
-
77955514183
-
Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans
-
Smith C.J., et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev. Biol. 2010, 345:18-33.
-
(2010)
Dev. Biol.
, vol.345
, pp. 18-33
-
-
Smith, C.J.1
-
10
-
-
78650882583
-
C. elegans multi-dendritic sensory neurons: morphology and function
-
Albeg A., et al. C. elegans multi-dendritic sensory neurons: morphology and function. Mol. Cell. Neurosci. 2010, 46:308-317.
-
(2010)
Mol. Cell. Neurosci.
, vol.46
, pp. 308-317
-
-
Albeg, A.1
-
11
-
-
78751564789
-
C. elegans bicd-1 homolog of the Drosophila dynein accessory factor, Bicaudal D, regulates the branching of PVD mechanosensory neuron dendrites
-
Aguirre-Chen C., et al. C. elegans bicd-1 homolog of the Drosophila dynein accessory factor, Bicaudal D, regulates the branching of PVD mechanosensory neuron dendrites. Development 2011, 138:507-518.
-
(2011)
Development
, vol.138
, pp. 507-518
-
-
Aguirre-Chen, C.1
-
12
-
-
79955088143
-
Lateral facilitation between primary mechanosensory neurons controls nose touch perception in C. elegans
-
Chatzigeorgiou M., Schafer W.R. Lateral facilitation between primary mechanosensory neurons controls nose touch perception in C. elegans. Neuron 2011, 70:299-309.
-
(2011)
Neuron
, vol.70
, pp. 299-309
-
-
Chatzigeorgiou, M.1
Schafer, W.R.2
-
13
-
-
0242548487
-
Painless, a Drosophila gene essential for nociception
-
Tracey W.D., et al. painless, a Drosophila gene essential for nociception. Cell 2003, 113:261-273.
-
(2003)
Cell
, vol.113
, pp. 261-273
-
-
Tracey, W.D.1
-
14
-
-
77649180413
-
Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae
-
Zhong L., et al. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 2010, 20:429-434.
-
(2010)
Curr. Biol.
, vol.20
, pp. 429-434
-
-
Zhong, L.1
-
15
-
-
67349162782
-
Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae
-
Babcock D.T., et al. Cytokine signaling mediates UV-induced nociceptive sensitization in Drosophila larvae. Curr. Biol. 2009, 19:799-806.
-
(2009)
Curr. Biol.
, vol.19
, pp. 799-806
-
-
Babcock, D.T.1
-
16
-
-
0024799201
-
The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types
-
Way J.C., Chalfie M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev. 1989, 3:1823-1833.
-
(1989)
Genes Dev.
, vol.3
, pp. 1823-1833
-
-
Way, J.C.1
Chalfie, M.2
-
17
-
-
0027479261
-
A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans
-
Kaplan J.M., Horvitz H.R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:2227-2231.
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 2227-2231
-
-
Kaplan, J.M.1
Horvitz, H.R.2
-
18
-
-
0002221492
-
The structure of the nervous system of the nematode Caenorhabditis elegans
-
White J.G., et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B 1986, 314:1-340.
-
(1986)
Philos. Trans. R. Soc. B
, vol.314
, pp. 1-340
-
-
White, J.G.1
-
19
-
-
0036500785
-
The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors
-
Halevi S., et al. The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J. 2002, 21:1012-1020.
-
(2002)
EMBO J.
, vol.21
, pp. 1012-1020
-
-
Halevi, S.1
-
20
-
-
0037108067
-
Mutations in the extracellular domain and in the membrane-spanning domains interfere with nicotinic acetylcholine receptor maturation
-
Yassin L., et al. Mutations in the extracellular domain and in the membrane-spanning domains interfere with nicotinic acetylcholine receptor maturation. Biochemistry 2002, 41:12329-12335.
-
(2002)
Biochemistry
, vol.41
, pp. 12329-12335
-
-
Yassin, L.1
-
21
-
-
0142074784
-
LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system
-
Tsalik E.L., et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev. Biol. 2003, 263:81-102.
-
(2003)
Dev. Biol.
, vol.263
, pp. 81-102
-
-
Tsalik, E.L.1
-
22
-
-
0018385401
-
Organization of neuronal microtubules in the nematode Caenorhabditis elegans
-
Chalfie M., Thomson J.N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J. Cell Biol. 1979, 82:278-289.
-
(1979)
J. Cell Biol.
, vol.82
, pp. 278-289
-
-
Chalfie, M.1
Thomson, J.N.2
-
23
-
-
0019546209
-
Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans
-
Chalfie M., Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 1981, 82:358-370.
-
(1981)
Dev. Biol.
, vol.82
, pp. 358-370
-
-
Chalfie, M.1
Sulston, J.2
-
24
-
-
0033214202
-
Genes regulating dendritic outgrowth, branching, and routing in Drosophila
-
Gao F.-B., et al. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 1999, 13:2549-2561.
-
(1999)
Genes Dev.
, vol.13
, pp. 2549-2561
-
-
Gao, F.-B.1
-
25
-
-
0036333568
-
Tiling of the Drosophila epidermis by multidendritic sensory neurons
-
Grueber W.B., et al. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 2002, 129:2867-2878.
-
(2002)
Development
, vol.129
, pp. 2867-2878
-
-
Grueber, W.B.1
-
26
-
-
34249714789
-
A sensory feedback circuit coordinates muscle activity in Drosophila
-
Hughes C.L., Thomas J.B. A sensory feedback circuit coordinates muscle activity in Drosophila. Mol. Cell. Neurosci. 2007, 35:383-396.
-
(2007)
Mol. Cell. Neurosci.
, vol.35
, pp. 383-396
-
-
Hughes, C.L.1
Thomas, J.B.2
-
27
-
-
36849017592
-
Nociceptive neurons protect Drosophila larvae from parasitoid wasps
-
Hwang R.Y., et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 2007, 17:2105-2116.
-
(2007)
Curr. Biol.
, vol.17
, pp. 2105-2116
-
-
Hwang, R.Y.1
-
28
-
-
78650306355
-
Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall
-
Xiang Y., et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 2010, 468:921-926.
-
(2010)
Nature
, vol.468
, pp. 921-926
-
-
Xiang, Y.1
-
29
-
-
33847217610
-
Mechanisms of sensory transduction in the skin
-
Lumpkin E.A., Caterina M.J. Mechanisms of sensory transduction in the skin. Nature 2007, 445:858-865.
-
(2007)
Nature
, vol.445
, pp. 858-865
-
-
Lumpkin, E.A.1
Caterina, M.J.2
-
30
-
-
0015891085
-
The free penicillate nerve endings of the human hairy skin
-
Cauna N. The free penicillate nerve endings of the human hairy skin. J. Anat. 1973, 115:277-288.
-
(1973)
J. Anat.
, vol.115
, pp. 277-288
-
-
Cauna, N.1
-
31
-
-
0019500512
-
Fine structure of myelinated mechanical nociceptor endings in cat hairy skin
-
Kruger L., et al. Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J. Comp. Neurol. 1981, 198:137-154.
-
(1981)
J. Comp. Neurol.
, vol.198
, pp. 137-154
-
-
Kruger, L.1
-
32
-
-
0030447445
-
Functional morphology of nociceptive and other fine sensory endings (free nerve endings) in different tissues
-
Messlinger K. Functional morphology of nociceptive and other fine sensory endings (free nerve endings) in different tissues. Prog. Brain Res. 1996, 113:273-298.
-
(1996)
Prog. Brain Res.
, vol.113
, pp. 273-298
-
-
Messlinger, K.1
-
33
-
-
0032879938
-
Electrophysiological assessment of the cutaneous arborization of Adelta-fiber nociceptors
-
Peng Y.B., et al. Electrophysiological assessment of the cutaneous arborization of Adelta-fiber nociceptors. J. Neurophysiol. 1999, 82:1164-1177.
-
(1999)
J. Neurophysiol.
, vol.82
, pp. 1164-1177
-
-
Peng, Y.B.1
-
34
-
-
0036796850
-
Innervation territories of mechano-insensitive C nociceptors in human skin
-
Schmidt R., et al. Innervation territories of mechano-insensitive C nociceptors in human skin. J. Neurophysiol. 2002, 88:1859-1866.
-
(2002)
J. Neurophysiol.
, vol.88
, pp. 1859-1866
-
-
Schmidt, R.1
-
35
-
-
0020004327
-
Physiological responses, receptive fields and terminal arborizations of nociceptive cells in the leech
-
Blackshaw S.E., et al. Physiological responses, receptive fields and terminal arborizations of nociceptive cells in the leech. J. Physiol. 1982, 326:251-260.
-
(1982)
J. Physiol.
, vol.326
, pp. 251-260
-
-
Blackshaw, S.E.1
-
36
-
-
0029941769
-
Properties of the nociceptive neurons of the leech segmental ganglion
-
Pastor J., et al. Properties of the nociceptive neurons of the leech segmental ganglion. J. Neurophysiol. 1996, 75:2268-2279.
-
(1996)
J. Neurophysiol.
, vol.75
, pp. 2268-2279
-
-
Pastor, J.1
-
37
-
-
0030898825
-
The establishment of peripheral sensory arbors in the leech: in vivo time-lapse studies reveal a highly dynamic process
-
Wang H., Macagno E.R. The establishment of peripheral sensory arbors in the leech: in vivo time-lapse studies reveal a highly dynamic process. J. Neurosci. 1997, 17:2408-2419.
-
(1997)
J. Neurosci.
, vol.17
, pp. 2408-2419
-
-
Wang, H.1
Macagno, E.R.2
-
38
-
-
0037130468
-
Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons
-
Tobin D., et al. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 2002, 35:307-318.
-
(2002)
Neuron
, vol.35
, pp. 307-318
-
-
Tobin, D.1
-
39
-
-
0030776196
-
OSM-9, a novel protein with structural similarity to channels is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans
-
Colbert H.A., et al. OSM-9, a novel protein with structural similarity to channels is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 1997, 17:8259-8269.
-
(1997)
J. Neurosci.
, vol.17
, pp. 8259-8269
-
-
Colbert, H.A.1
-
41
-
-
0024043341
-
Mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans
-
Way J.C., Chalfie M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 1988, 54:5-16.
-
(1988)
Cell
, vol.54
, pp. 5-16
-
-
Way, J.C.1
Chalfie, M.2
-
42
-
-
0037459385
-
Different levels of the homeodomain protein Cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons
-
Grueber W.B., et al. Different levels of the homeodomain protein Cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 2003, 112:805-818.
-
(2003)
Cell
, vol.112
, pp. 805-818
-
-
Grueber, W.B.1
-
43
-
-
34548460311
-
Selective expression of Knot/Collier, a transcriptional regulator of the EBF/Olf-1 family, endows the Drosophila sensory system with neuronal class-specific elaborated dendritic patterns
-
Hattori Y., et al. Selective expression of Knot/Collier, a transcriptional regulator of the EBF/Olf-1 family, endows the Drosophila sensory system with neuronal class-specific elaborated dendritic patterns. Genes Cells 2007, 12:1011-1022.
-
(2007)
Genes Cells
, vol.12
, pp. 1011-1022
-
-
Hattori, Y.1
-
44
-
-
37049025567
-
Knot/Collier and Cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape
-
Jinushi-Nakao S., et al. Knot/Collier and Cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron 2007, 56:963-978.
-
(2007)
Neuron
, vol.56
, pp. 963-978
-
-
Jinushi-Nakao, S.1
-
45
-
-
53349168419
-
Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes
-
Satoh D., et al. Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nat. Cell Biol. 2008, 10:1164-1171.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1164-1171
-
-
Satoh, D.1
-
46
-
-
34547937104
-
Growing dendrites and axons differ in their reliance on the secretory pathway
-
Ye B., et al. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 2007, 130:717-729.
-
(2007)
Cell
, vol.130
, pp. 717-729
-
-
Ye, B.1
-
47
-
-
33646558590
-
The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila
-
Sweeney N.T., et al. The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr. Biol. 2006, 16:1006-1011.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1006-1011
-
-
Sweeney, N.T.1
-
48
-
-
5144222766
-
Control of dendritic branching and tiling by the Tricornered-Kinase/Furry signaling pathway in Drosophila sensory neurons
-
Emoto K., et al. Control of dendritic branching and tiling by the Tricornered-Kinase/Furry signaling pathway in Drosophila sensory neurons. Cell 2004, 119:245-256.
-
(2004)
Cell
, vol.119
, pp. 245-256
-
-
Emoto, K.1
-
49
-
-
33748664773
-
The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance
-
Emoto K., et al. The tumour suppressor Hippo acts with the NDR kinases in dendritic tiling and maintenance. Nature 2006, 443:210-213.
-
(2006)
Nature
, vol.443
, pp. 210-213
-
-
Emoto, K.1
-
50
-
-
55749097770
-
Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila
-
Dimitrova S., et al. Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila. Dev. Biol. 2008, 324:18-30.
-
(2008)
Dev. Biol.
, vol.324
, pp. 18-30
-
-
Dimitrova, S.1
-
51
-
-
34247526944
-
Homophilic Dscam interactions control complex dendrite morphogenesis
-
Hughes M.E., et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 2007, 54:417-427.
-
(2007)
Neuron
, vol.54
, pp. 417-427
-
-
Hughes, M.E.1
-
52
-
-
34247536245
-
Dendrite self-avoidance is controlled by Dscam
-
Matthews B.J., et al. Dendrite self-avoidance is controlled by Dscam. Cell 2007, 129:593-604.
-
(2007)
Cell
, vol.129
, pp. 593-604
-
-
Matthews, B.J.1
-
53
-
-
34247539553
-
Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization
-
Soba P., et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 2007, 54:403-416.
-
(2007)
Neuron
, vol.54
, pp. 403-416
-
-
Soba, P.1
-
54
-
-
0345308602
-
Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1
-
Lee A., et al. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 2003, 130:5543-5552.
-
(2003)
Development
, vol.130
, pp. 5543-5552
-
-
Lee, A.1
-
55
-
-
0021907049
-
Developmental arborization of sensory neurons in the leech Haementeria ghilianii. I. Origin of natural variations in the branching pattern
-
Kramer A.P., et al. Developmental arborization of sensory neurons in the leech Haementeria ghilianii. I. Origin of natural variations in the branching pattern. J. Neurosci. 1985, 5:759-767.
-
(1985)
J. Neurosci.
, vol.5
, pp. 759-767
-
-
Kramer, A.P.1
-
56
-
-
0021916282
-
Developmental arborization of sensory neurons in the leech Haementeria ghilianii. II. Experimentally induced variations in the branching pattern
-
Kramer A.P., Stent G.S. Developmental arborization of sensory neurons in the leech Haementeria ghilianii. II. Experimentally induced variations in the branching pattern. J. Neurosci. 1985, 5:768-775.
-
(1985)
J. Neurosci.
, vol.5
, pp. 768-775
-
-
Kramer, A.P.1
Stent, G.S.2
-
57
-
-
0031891297
-
Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons
-
Adams C.M., et al. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 1998, 140:143-152.
-
(1998)
J. Cell Biol.
, vol.140
, pp. 143-152
-
-
Adams, C.M.1
-
58
-
-
0037186523
-
MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation
-
Goodman M.B., et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 2002, 415:1039-1042.
-
(2002)
Nature
, vol.415
, pp. 1039-1042
-
-
Goodman, M.B.1
-
59
-
-
18244402692
-
The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice
-
Price M.P., et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001, 32:1071-1083.
-
(2001)
Neuron
, vol.32
, pp. 1071-1083
-
-
Price, M.P.1
-
60
-
-
0035871647
-
Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons
-
García-Añoveros J., et al. Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 2001, 21:2678-2686.
-
(2001)
J. Neurosci.
, vol.21
, pp. 2678-2686
-
-
García-Añoveros, J.1
-
61
-
-
4344605854
-
Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing
-
Roza C., et al. Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J. Physiol. 2004, 558:659-669.
-
(2004)
J. Physiol.
, vol.558
, pp. 659-669
-
-
Roza, C.1
-
62
-
-
2442699006
-
Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurons
-
Drew L.J., et al. Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurons. J. Physiol. 2004, 556:691-710.
-
(2004)
J. Physiol.
, vol.556
, pp. 691-710
-
-
Drew, L.J.1
-
63
-
-
77957332682
-
Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
-
Coste B., et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010, 330:55-60.
-
(2010)
Science
, vol.330
, pp. 55-60
-
-
Coste, B.1
-
64
-
-
77958462152
-
The cell biology of touch
-
Lumpkin E.A., et al. The cell biology of touch. J. Cell Biol. 2010, 191:237-248.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 237-248
-
-
Lumpkin, E.A.1
-
65
-
-
77955464974
-
The force be with you: a mechanoreceptor channel in proprioception and touch
-
Wilson R.I., Corey D.P. The force be with you: a mechanoreceptor channel in proprioception and touch. Neuron 2010, 67:349-351.
-
(2010)
Neuron
, vol.67
, pp. 349-351
-
-
Wilson, R.I.1
Corey, D.P.2
-
66
-
-
77955464216
-
C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel
-
Kang L., et al. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron 2010, 67:381-391.
-
(2010)
Neuron
, vol.67
, pp. 381-391
-
-
Kang, L.1
-
67
-
-
0024688962
-
Mec-7 is a b-tubulin required for the production of 15-protofilament microtubules in Caenorhabditis elegans
-
Savage C., et al. mec-7 is a b-tubulin required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 1989, 3:870-881.
-
(1989)
Genes Dev.
, vol.3
, pp. 870-881
-
-
Savage, C.1
-
68
-
-
38449107210
-
Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons
-
Cueva J.G., et al. Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J. Neurosci. 2007, 27:14089-14098.
-
(2007)
J. Neurosci.
, vol.27
, pp. 14089-14098
-
-
Cueva, J.G.1
-
69
-
-
16644397827
-
The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals
-
O'Hagan R., et al. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 2005, 8:43-50.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 43-50
-
-
O'Hagan, R.1
-
70
-
-
0030021050
-
Extracellular proteins needed for C. elegans mechanosensation
-
Du H., et al. Extracellular proteins needed for C. elegans mechanosensation. Neuron 1996, 16:183-194.
-
(1996)
Neuron
, vol.16
, pp. 183-194
-
-
Du, H.1
-
71
-
-
0019732181
-
Morphology and distribution of touch cell terminals in the skin of the leech
-
Blackshaw S.E. Morphology and distribution of touch cell terminals in the skin of the leech. J. Physiol. 1981, 320:219-228.
-
(1981)
J. Physiol.
, vol.320
, pp. 219-228
-
-
Blackshaw, S.E.1
-
72
-
-
0024268636
-
Sensory innervation of the hairs of the rat hindlimb: a light microscopic analysis
-
Millard C.L., Woolf C.J. Sensory innervation of the hairs of the rat hindlimb: a light microscopic analysis. J. Comp. Neurol. 1988, 277:183-194.
-
(1988)
J. Comp. Neurol.
, vol.277
, pp. 183-194
-
-
Millard, C.L.1
Woolf, C.J.2
-
73
-
-
0014609028
-
Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli
-
Bessou P., Perl E.R. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol. 1969, 32:1025-1043.
-
(1969)
J. Neurophysiol.
, vol.32
, pp. 1025-1043
-
-
Bessou, P.1
Perl, E.R.2
-
74
-
-
0345616438
-
ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures
-
Story G.M., et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112:819-829.
-
(2003)
Cell
, vol.112
, pp. 819-829
-
-
Story, G.M.1
-
75
-
-
0034646740
-
Impaired nociception and pain sensation in mice lacking the capsaicin receptor
-
Caterina M.J., et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288:306-313.
-
(2000)
Science
, vol.288
, pp. 306-313
-
-
Caterina, M.J.1
-
76
-
-
18344386202
-
A TRP channel that senses cold stimuli and menthol
-
Peier A.M., et al. A TRP channel that senses cold stimuli and menthol. Cell 2002, 108:705-715.
-
(2002)
Cell
, vol.108
, pp. 705-715
-
-
Peier, A.M.1
-
77
-
-
0037034931
-
Identification of a cold receptor reveals a general role for TRP channels in thermosensation
-
McKemy D.D., et al. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002, 416:52-58.
-
(2002)
Nature
, vol.416
, pp. 52-58
-
-
McKemy, D.D.1
-
78
-
-
34447542435
-
The menthol receptor TRPM8 is the principal detector of environmental cold
-
Bautista D.M., et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448:204-208.
-
(2007)
Nature
, vol.448
, pp. 204-208
-
-
Bautista, D.M.1
-
79
-
-
79955667133
-
TRPM3 is a nociceptor channel involved in the detection of noxious heat
-
Vriens J., et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 2011, 70:482-494.
-
(2011)
Neuron
, vol.70
, pp. 482-494
-
-
Vriens, J.1
-
80
-
-
1642430679
-
Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1
-
Jordt S.E., et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427:260-265.
-
(2004)
Nature
, vol.427
, pp. 260-265
-
-
Jordt, S.E.1
-
81
-
-
33646045075
-
TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents
-
Bautista D.M., et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006, 124:1269-1282.
-
(2006)
Cell
, vol.124
, pp. 1269-1282
-
-
Bautista, D.M.1
-
82
-
-
77955304238
-
TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo
-
Knowlton W.M., et al. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 2010, 150:340-350.
-
(2010)
Pain
, vol.150
, pp. 340-350
-
-
Knowlton, W.M.1
-
83
-
-
3242734800
-
Nociceptors lacking TRPV1 and TRPV2 have normal heat responses
-
Woodbury C.J., et al. Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J. Neurosci. 2004, 24:6410-6415.
-
(2004)
J. Neurosci.
, vol.24
, pp. 6410-6415
-
-
Woodbury, C.J.1
-
84
-
-
48149092950
-
Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade
-
Kwon Y., et al. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat. Neurosci. 2008, 8:871-873.
-
(2008)
Nat. Neurosci.
, vol.8
, pp. 871-873
-
-
Kwon, Y.1
-
85
-
-
77951787575
-
Heat generates oxidized linoleic acid metabolites that activate TRPV1and produce pain in rodents
-
Patwardhan A.M., et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1and produce pain in rodents. J. Clin. Invest. 2010, 120:1617-1626.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1617-1626
-
-
Patwardhan, A.M.1
-
86
-
-
78149485777
-
TRPA1 contributes to cold hypersensitivity
-
del Camino D., et al. TRPA1 contributes to cold hypersensitivity. J. Neurosci. 2010, 30:15165-15174.
-
(2010)
J. Neurosci.
, vol.30
, pp. 15165-15174
-
-
del Camino, D.1
-
87
-
-
17644426325
-
Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing
-
Nagata K., et al. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 2005, 25:4052-4061.
-
(2005)
J. Neurosci.
, vol.25
, pp. 4052-4061
-
-
Nagata, K.1
-
88
-
-
0022792740
-
Mutant sensory cilia in Caenorhabditis elegans
-
Perkins L.A., et al. Mutant sensory cilia in Caenorhabditis elegans. Dev. Biol. 1985, 117:456-487.
-
(1985)
Dev. Biol.
, vol.117
, pp. 456-487
-
-
Perkins, L.A.1
-
89
-
-
0015992576
-
Bradykinin and serotonin effects on various types of cutaneous nerve fibers
-
Beck P.W., Handwerker H.O. Bradykinin and serotonin effects on various types of cutaneous nerve fibers. Pflugers Arch. 1974, 347:209-222.
-
(1974)
Pflugers Arch.
, vol.347
, pp. 209-222
-
-
Beck, P.W.1
Handwerker, H.O.2
-
90
-
-
0036149221
-
Cell damage excites nociceptors through release of cytosolic ATP
-
Cook S.P., McCleskey E.W. Cell damage excites nociceptors through release of cytosolic ATP. Pain 2002, 95:41-47.
-
(2002)
Pain
, vol.95
, pp. 41-47
-
-
Cook, S.P.1
McCleskey, E.W.2
-
91
-
-
70349577888
-
TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP
-
Mandadi S., et al. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch. 2009, 458:1093-1102.
-
(2009)
Pflugers Arch.
, vol.458
, pp. 1093-1102
-
-
Mandadi, S.1
-
92
-
-
0030477079
-
Cutaneous polymodal receptors: characteristics and plasticity
-
Perl E.R. Cutaneous polymodal receptors: characteristics and plasticity. Prog. Brain Res. 1996, 113:21-37.
-
(1996)
Prog. Brain Res.
, vol.113
, pp. 21-37
-
-
Perl, E.R.1
-
93
-
-
78149359626
-
Nociceptor sensitization in pain pathogenesis
-
Gold M.S., Gebhart G.F. Nociceptor sensitization in pain pathogenesis. Nat. Med. 2010, 16:1248-1257.
-
(2010)
Nat. Med.
, vol.16
, pp. 1248-1257
-
-
Gold, M.S.1
Gebhart, G.F.2
-
94
-
-
0033714116
-
C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway
-
Sawin E.R., et al. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26:619-631.
-
(2000)
Neuron
, vol.26
, pp. 619-631
-
-
Sawin, E.R.1
-
95
-
-
33645452380
-
A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue
-
Li W., et al. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 2006, 440:684-687.
-
(2006)
Nature
, vol.440
, pp. 684-687
-
-
Li, W.1
-
96
-
-
34247536405
-
Caenorhabditis elegans TRPA-1 functions in mechanosensation
-
Kindt K.S., et al. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci. 2007, 10:568-577.
-
(2007)
Nat. Neurosci.
, vol.10
, pp. 568-577
-
-
Kindt, K.S.1
|