-
2
-
-
0024685547
-
Identification of MIMO non-linear systems using a forward-regression orthogonal estimator
-
S.A. Billings, A. Chen, and M.J. Korenberg. Identification of MIMO non-linear systems using a forward-regression orthogonal algorithm. Intern. J. of Control, 49:2157-2189, 1989. (Pubitemid 20610944)
-
(1989)
International Journal of Control
, vol.49
, Issue.6
, pp. 2157-2189
-
-
Billings, S.A.1
Chen, S.2
Korenberg, M.J.3
-
5
-
-
0025464263
-
Structure identification of nonlinear systems-a survey
-
R. Haber and H. Unbehauen. Structure identification of nonlinear systems-a survey. Automatica, 26:651-677, 1990.
-
(1990)
Automatica
, vol.26
, pp. 651-677
-
-
Haber, R.1
Unbehauen, H.2
-
6
-
-
33646241633
-
Learning long-term dependencies in NARX recurrent neural networks
-
PII S1045922796074607
-
T. Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long- term dependencies in narx recurrent neural networks. IEEE Trans. on Neural Networks, 7:1329-1338, 1996. (Pubitemid 126780474)
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.6
, pp. 1329-1338
-
-
Lin, T.1
Horne, B.G.2
Tino, P.3
Giles, C.L.4
-
7
-
-
37849012165
-
Regressor and structure selection in NARX models using a structured ANOVA approach
-
I. Lind and L. Ljung. Regressor and structure selection in NARX models using a structured ANOVA approach. Automatica, 44:383-395, 2008.
-
(2008)
Automatica
, vol.44
, pp. 383-395
-
-
Lind, I.1
Ljung, L.2
-
12
-
-
0347592205
-
An identification algorithm for polynomial narx models based on simulation error minimization
-
L. Piroddi and W. Spinelli. An identification algorithm for polynomial narx models based on simulation error minimization. Intern. J. of Control, 76:1767-1781, 2003.
-
(2003)
Intern J. of Control
, vol.76
, pp. 1767-1781
-
-
Piroddi, L.1
Spinelli, W.2
-
15
-
-
0029483769
-
Nonlinear black-box modeling in system identification: A unified overview
-
J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. De- lyon, P.Y. Glorennec, H. Hjalmarsson, and A. Juditsky. Nonlinear black-box modeling in system identification: a unified overview. Automatica, 31:1691-1724, 1995.
-
(1995)
Automatica
, vol.31
, pp. 1691-1724
-
-
Sjoberg, J.1
Zhang, Q.2
Ljung, L.3
Benveniste, A.4
De- Lyon, B.5
Glorennec, P.Y.6
Hjalmarsson, H.7
Juditsky, A.8
-
16
-
-
34547455409
-
Learning theory estimates via in- tegral operators and their approximations
-
S. Smale and D.X. Zhou. Learning theory estimates via in- tegral operators and their approximations. Constructive approximation, 26:153-172, 2007.
-
(2007)
Constructive Approximation
, vol.26
, pp. 153-172
-
-
Smale, S.1
Zhou, D.X.2
-
18
-
-
27644473446
-
On the role of prefiltering in nonlinear system identification
-
DOI 10.1109/TAC.2005.856655
-
W. Spinelli, L. Piroddi, and M. Lovera. On the role of prefiltering in nonlinear system identification. IEEE Trans. on Automatic Control, 50:1597-1602, 2005. (Pubitemid 41555607)
-
(2005)
IEEE Transactions on Automatic Control
, vol.50
, Issue.10
, pp. 1597-1602
-
-
Spinelli, W.1
Piroddi, L.2
Lovera, M.3
-
19
-
-
33947372892
-
An explicit description of the reproducing Kernel Hilbert spaces of Gaussian RBF kernels
-
DOI 10.1109/TIT.2006.881713
-
I. Steinwart, D. Hush, and C. Scovel. An explicit de- scription of the Reproducing Kernel Hilbert Space of Gaussian rbf kernels. IEEE Transactions on Informa- tion Theory, 52:4635-4643, 2006. (Pubitemid 46445299)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.10
, pp. 4635-4643
-
-
Steinwart, I.1
Hush, D.2
Scovel, C.3
-
21
-
-
0039813137
-
Gaussian regression and optimal finite dimensional lin- ear models
-
C. M. Bishop, editor. Springer-Verlag
-
H. Zhu, C. K. I. Williams, R. Rohwer, and M. Morciniec. Gaussian regression and optimal finite dimensional lin- ear models. In C.M. Bishop, editor, Neural networks and machine learning. Springer-Verlag, 1998.
-
(1998)
Neural Networks and Machine Learning
-
-
Zhu, H.1
Williams, C.K.I.2
Rohwer, R.3
Morciniec, M.4
|