메뉴 건너뛰기




Volumn , Issue , 2008, Pages 744-749

Predictor estimation via Gaussian regression

Author keywords

Bayesian estimation; Gaussian processes; Kernel based methods; Linear system identification; Predictor estimation; Regularization

Indexed keywords

BAYESIAN NETWORKS; GAUSSIAN NOISE (ELECTRONIC); IMPULSE RESPONSE; LINEAR SYSTEMS;

EID: 62949127525     PISSN: 07431546     EISSN: 25762370     Source Type: Conference Proceeding    
DOI: 10.1109/CDC.2008.4739131     Document Type: Conference Paper
Times cited : (7)

References (20)
  • 4
    • 0036027462 scopus 로고    scopus 로고
    • Non-stationary stochastic embedding for transfer function estimation
    • G. Goodwin, J. Braslavsky, and M. Seron, "Non-stationary stochastic embedding for transfer function estimation," Automatica, vol. 38, pp. 47-62, 2002.
    • (2002) Automatica , vol.38 , pp. 47-62
    • Goodwin, G.1    Braslavsky, J.2    Seron, M.3
  • 5
    • 0026258792 scopus 로고
    • Optimal estimation theory for dynamic systems with set membership uncertainty : An overview
    • M. Milanese and A. Vicino, "Optimal estimation theory for dynamic systems with set membership uncertainty : An overview," Automatica, vol. 27, no. 6, pp. 997-1009, 1991.
    • (1991) Automatica , vol.27 , Issue.6 , pp. 997-1009
    • Milanese, M.1    Vicino, A.2
  • 8
    • 0041193345 scopus 로고
    • Nonparametric bayesian regression
    • D. Barry, "Nonparametric bayesian regression," The Annals of Statistics, vol. 14, pp. 934-953, 1986.
    • (1986) The Annals of Statistics , vol.14 , pp. 934-953
    • Barry, D.1
  • 9
    • 0028330582 scopus 로고
    • Identification of the deterministic part of MIMO state space models given in innovations form from input-output data
    • M. Verhaegen, "Identification of the deterministic part of MIMO state space models given in innovations form from input-output data," Automatica, vol. 30, pp. 61-74, 1994.
    • (1994) Automatica , vol.30 , pp. 61-74
    • Verhaegen, M.1
  • 10
    • 13244255696 scopus 로고    scopus 로고
    • Asymptotic properties of subspace estimators
    • D. Bauer, "Asymptotic properties of subspace estimators," Automatica, vol. 41, pp. 359-376, 2005.
    • (2005) Automatica , vol.41 , pp. 359-376
    • Bauer, D.1
  • 11
    • 34247573113 scopus 로고    scopus 로고
    • The role of Vector Auto Regressive modeling in predictor based subspace identification
    • June
    • A. Chiuso, "The role of Vector Auto Regressive modeling in predictor based subspace identification," Automatica, vol. 43, no. 6, pp. 1034-1048, June 2007.
    • (2007) Automatica , vol.43 , Issue.6 , pp. 1034-1048
    • Chiuso, A.1
  • 14
    • 35248875139 scopus 로고    scopus 로고
    • A. J. Smola and B. Schölkopf, Bayesian kernel methods, in Machine Learning, Proceedings of the Summer School, Australian National University, S. Mendelson and A. J. Smola, Eds. Berlin, Germany: Springer-Verlag, 2003, pp. 65-117.
    • A. J. Smola and B. Schölkopf, "Bayesian kernel methods," in Machine Learning, Proceedings of the Summer School, Australian National University, S. Mendelson and A. J. Smola, Eds. Berlin, Germany: Springer-Verlag, 2003, pp. 65-117.
  • 16
    • 34249036998 scopus 로고    scopus 로고
    • Nonparametric identification of population models via Gaussian processes
    • M. Neve, G. De Nicolao, and L. Marchesi, "Nonparametric identification of population models via Gaussian processes," Automatica, vol. 97, no. 7, pp. 1134-1144, 2007.
    • (2007) Automatica , vol.97 , Issue.7 , pp. 1134-1144
    • Neve, M.1    De Nicolao, G.2    Marchesi, L.3
  • 19
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, "Networks for approximation and learning," Proceedings of the IEEE, vol. 78, pp. 1481-1497, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.