메뉴 건너뛰기




Volumn , Issue , 2009, Pages 117-131

Detecting large-scale system problems by mining console logs

Author keywords

Console log analysis; Monitoring; PCA; Problem detection; Source code analysis; Statistical learning; Tracing

Indexed keywords

CONSOLE LOG ANALYSIS; LOG ANALYSIS; PROBLEM DETECTION; SOURCE CODE ANALYSIS; STATISTICAL LEARNING;

EID: 72249121870     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1629575.1629587     Document Type: Conference Paper
Times cited : (951)

References (35)
  • 3
    • 26844519400 scopus 로고    scopus 로고
    • Path-based failure and evolution management
    • San Francisco, California, USENIX
    • M. Y. Chen and et al. Path-based failure and evolution management. In Proc. NSDI'04, pages 23-23, San Francisco, California, 2004. USENIX.
    • (2004) Proc. NSDI'04 , pp. 23-23
    • Chen, M.Y.1    and et, al.2
  • 5
    • 14944348811 scopus 로고    scopus 로고
    • Multi-dimensional fault diagnosis using a subspace approach
    • R. Dunia and S. J. Qin. Multi-dimensional fault diagnosis using a subspace approach. In Proc. ACC, 1997.
    • (1997) Proc. ACC
    • Dunia, R.1    Qin, S.J.2
  • 7
    • 84865636979 scopus 로고    scopus 로고
    • From dirt to shovels: Fully automatic tool generation from ad hoc data
    • K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to shovels: fully automatic tool generation from ad hoc data. In Proceedings of ACM POPL '08, pages 421-434, 2008.
    • (2008) Proceedings of ACM POPL '08 , pp. 421-434
    • Fisher, K.1    Walker, D.2    Zhu, K.Q.3    White, P.4
  • 8
    • 72249113389 scopus 로고    scopus 로고
    • R. Fonseca and et al. Xtrace: A pervasive network tracing framework. In In Proc. NSDI, 2007.
    • R. Fonseca and et al. Xtrace: A pervasive network tracing framework. In In Proc. NSDI, 2007.
  • 10
    • 84938600282 scopus 로고
    • Automated system monitoring and notification with Swatch
    • S. E. Hansen and E. T. Atkins. Automated system monitoring and notification with Swatch. In Proc. USENIX LISA '93, pages 145-152, 1993.
    • (1993) Proc. USENIX LISA '93 , pp. 145-152
    • Hansen, S.E.1    Atkins, E.T.2
  • 12
    • 0036997440 scopus 로고    scopus 로고
    • Discovering actionable patterns in event data
    • J. Hellerstein, S. Ma, and C. Perng. Discovering actionable patterns in event data. IBM Sys. Jour, 41(3), 2002.
    • (2002) IBM Sys. Jour , vol.41 , Issue.3
    • Hellerstein, J.1    Ma, S.2    Perng, C.3
  • 13
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • J. E. Jackson and G. S. Mudholkar. Control procedures for residuals associated with principal component analysis. Technometrics, 21(3):341-349, 1979.
    • (1979) Technometrics , vol.21 , Issue.3 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2
  • 14
    • 85077345110 scopus 로고    scopus 로고
    • Understanding customer problem troubleshooting from storage system logs
    • W. Jiang and et al. Understanding customer problem troubleshooting from storage system logs. In Proceedings of USENIX FAST'09, 2009.
    • (2009) Proceedings of USENIX FAST'09
    • Jiang, W.1    and et, al.2
  • 17
    • 53349174366 scopus 로고    scopus 로고
    • A log mining approach to failure analysis of enterprise telephony systems
    • June
    • C. Lim, N. Singh, and S. Yajnik. A log mining approach to failure analysis of enterprise telephony systems. In Proc. DSN, June 2008.
    • (2008) Proc. DSN
    • Lim, C.1    Singh, N.2    Yajnik, S.3
  • 18
    • 0034998533 scopus 로고    scopus 로고
    • Mining partially periodic event patterns with unknown periods
    • Washington, DC
    • S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown periods. In Proc. IEEE ICDE, Washington, DC, 2001.
    • (2001) Proc. IEEE ICDE
    • Ma, S.1    Hellerstein, J.L.2
  • 22
    • 36049013419 scopus 로고    scopus 로고
    • What supercomputers say: A study of five system logs
    • Washington, DC
    • A. Oliner and J. Stearley. What supercomputers say: A study of five system logs. In Proc. IEEE DSN, Washington, DC, 2007.
    • (2007) Proc. IEEE DSN
    • Oliner, A.1    Stearley, J.2
  • 23
    • 85120655496 scopus 로고    scopus 로고
    • Why inverse document frequency?
    • Morristown, NJ, Asso. for Comp. Linguistics
    • K. Papineni. Why inverse document frequency? In Proc. NAACL '01:, pages 1-8, Morristown, NJ, 2001. Asso. for Comp. Linguistics.
    • (2001) Proc. NAACL '01 , pp. 1-8
    • Papineni, K.1
  • 26
    • 0003862399 scopus 로고
    • Term weighting approaches in automatic text retrieval
    • Technical report, Cornell, Ithaca, NY, USA
    • G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval. Technical report, Cornell, Ithaca, NY, USA, 1987.
    • (1987)
    • Salton, G.1    Buckley, C.2
  • 27
    • 20444471122 scopus 로고    scopus 로고
    • Towards informatic analysis of syslogs
    • Washington, DC
    • J. Stearley. Towards informatic analysis of syslogs. In Proc. IEEE CLUSTER, Washington, DC, 2004.
    • (2004) Proc. IEEE CLUSTER
    • Stearley, J.1
  • 30
    • 81055156948 scopus 로고    scopus 로고
    • SALSA: Analyzing logs as StAte machines
    • J. Tan and et al. SALSA: Analyzing logs as StAte machines. In Proc. of WASL '08, 2008.
    • (2008) Proc. of WASL '08
    • Tan, J.1    and et, al.2
  • 31
    • 70449894273 scopus 로고    scopus 로고
    • L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment: bugs or bad comments?*/. In Proc. ACM SOSP '07, New York, NY, 2007. ACM.
    • L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment: bugs or bad comments?*/. In Proc. ACM SOSP '07, New York, NY, 2007. ACM.
  • 32
    • 69949123786 scopus 로고    scopus 로고
    • A data clustering algorithm for mining patterns from event logs
    • R. Vaarandi. A data clustering algorithm for mining patterns from event logs. Proc. IPOM, 2003.
    • (2003) Proc. IPOM
    • Vaarandi, R.1
  • 33
    • 35048859299 scopus 로고    scopus 로고
    • A breadth-first algorithm for mining frequent patterns from event logs
    • Springer
    • R. Vaarandi. A breadth-first algorithm for mining frequent patterns from event logs. In INTELLCOMM, volume 3283, pages 293-308. Springer, 2004.
    • (2004) INTELLCOMM , vol.3283 , pp. 293-308
    • Vaarandi, R.1
  • 35
    • 72249085353 scopus 로고    scopus 로고
    • Dynamic syslog mining for network failure monitoring
    • New York, NY
    • K. Yamanishi and Y. Maruyama. Dynamic syslog mining for network failure monitoring. In Proc. ACM KDD, New York, NY, 2005.
    • (2005) Proc. ACM KDD
    • Yamanishi, K.1    Maruyama, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.