메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Machine learning approaches for high-resolution urban land cover classification: [A comparative study]

Author keywords

Bayesian classification; MCS; Neural networks; Trees

Indexed keywords

BAYESIAN CLASSIFICATION; CLASSIFICATION TASKS; CLASSIFICATION TECHNIQUE; COMPARATIVE STUDIES; HIGH RESOLUTION; HIGH RESOLUTION REMOTE SENSING; LOGISTIC REGRESSIONS; MACHINE-LEARNING; MCS; MULTIPLE CLASSIFIER SYSTEMS; STATISTICAL CLASSIFICATION; TREES; URBAN LAND COVER CLASSIFICATION;

EID: 79960089324     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1999320.1999331     Document Type: Conference Paper
Times cited : (9)

References (26)
  • 3
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classificaion of multisource remote sensing data
    • A. Benediktsson, P. Swain, and O. Ersoy. Neural network approaches versus statistical methods in classificaion of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28(4):550, 1990.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , Issue.4 , pp. 550
    • Benediktsson, A.1    Swain, P.2    Ersoy, O.3
  • 4
    • 0030618061 scopus 로고    scopus 로고
    • Multisource classification of complex rural areas by statistical and neural-network approaches
    • May
    • L. Bruzzone, C. Consese, F. Masellit, and F. Roli. Multisource classification of complex rural areas by statistical and neural-network approaches. Photogrammetric Engineering & Remote Sensing, 63(5):523-533, May 1997.
    • (1997) Photogrammetric Engineering & Remote Sensing , vol.63 , Issue.5 , pp. 523-533
    • Bruzzone, L.1    Consese, C.2    Masellit, F.3    Roli, F.4
  • 5
    • 79960093852 scopus 로고    scopus 로고
    • A Robust Multiple Classifier System for a Partially Unsupervised Updating of Land-Cover Maps
    • Multiple Classifier Systems
    • L. Bruzzone and R. Cossu. A robust multiple classifier system for a partially unsupervised updating of land-cover maps. In 2nd International Workshop on Multiple Classifier Systems, pages 259-268, 69121 Heidelberg, Germany, 2001. LNCS 2096, Springer Verlag. (Pubitemid 33303233)
    • (2001) Lecture Notes in Computer Science , Issue.2096 , pp. 259-268
    • Bruzzone, L.1    Cossu, R.2
  • 7
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • DOI 10.1016/S1532-0464(03)00034-0
    • S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics, 35(5-6):352-359, 2002. (Pubitemid 36951935)
    • (2002) Journal of Biomedical Informatics , vol.35 , Issue.5-6 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 9
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • DOI 10.1016/S0034-4257(97)00049-7, PII S0034425797000497
    • M. A. Friedl and C. E. Brodley. Decision Tree Classification of Land Cover from Remotely Sensed Data. Remote Sensing of Environment, 61:399-409, 1997. (Pubitemid 28052029)
    • (1997) Remote Sensing of Environment , vol.61 , Issue.3 , pp. 399-409
    • Brodley, C.E.1    Friedl, M.A.2
  • 10
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh. Investigation of the random forest framework for classification of hyperspectral data. Geoscience and Remote Sensing, IEEE Transactions on, 43(3):492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 13
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • I. Kanellopoulos and G. G. Wilkinson. Strategies and best practice for neural network image classification. International Journal of Remote Sensing, 18(4):711-725, 1997.
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 711-725
    • Kanellopoulos, I.1    Wilkinson, G.G.2
  • 15
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • DOI 10.1016/S0031-3203(99)00223-X
    • L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition, 34(2):299-314, 2001. (Pubitemid 32871876)
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 16
    • 67349229152 scopus 로고    scopus 로고
    • Migratory logistic regression for learning concept drift between two data sets with application to UXO sensing
    • May
    • X. Liao and L. Carin. Migratory logistic regression for learning concept drift between two data sets with application to UXO sensing. Geoscience and Remote Sensing, IEEE Transactions on, 47(5):1454-1466, May 2009.
    • (2009) Geoscience and Remote Sensing, IEEE Transactions on , vol.47 , Issue.5 , pp. 1454-1466
    • Liao, X.1    Carin, L.2
  • 17
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum likelihood classifiers for urban land use classification
    • J. Paola and R. Schowengerdt. A detailed comparison of backpropagation neural network and maximum likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33(4):981-996, 1995.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.1    Schowengerdt, R.2
  • 18
    • 0030618062 scopus 로고    scopus 로고
    • The effect of neural-network structure on a multispectral land-use/land-cover classification
    • May
    • J. Paola and R. Schowengerdt. The effect of neural-network structure on a multispectral land-use/land-cover classification. Photogrammetric Engineering & Remote Sensing, 63(5):535-544, May 1997.
    • (1997) Photogrammetric Engineering & Remote Sensing , vol.63 , Issue.5 , pp. 535-544
    • Paola, J.1    Schowengerdt, R.2
  • 19
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification
    • July
    • J. D. Paola and R. A. Schowengerdt. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. Geoscience and Remote Sensing, IEEE Transactions on, 33(4):981-996, July 1995.
    • (1995) Geoscience and Remote Sensing, IEEE Transactions on , vol.33 , Issue.4 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 23
    • 0036543957 scopus 로고    scopus 로고
    • Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
    • DOI 10.1109/TGRS.2002.1006354, PII S0196289202046028
    • P. C. Smits. Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. Geoscience and Remote Sensing, IEEE Transactions on, 40(4):801-813, Apr. 2002. (Pubitemid 34741654)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.4 , pp. 801-813
    • Smits, P.C.1
  • 24
    • 0019227654 scopus 로고
    • The use of prior probabilities in maximum likelihood classification of remote sensing data
    • A. Strahler. The use of prior probabilities in maximum likelihood classification of remote sensing data. Remote Sensing of Environment, 10:135-163, 1980.
    • (1980) Remote Sensing of Environment , vol.10 , pp. 135-163
    • Strahler, A.1
  • 25
    • 79951763773 scopus 로고    scopus 로고
    • Unsupervised semantic labeling framework for identification of complex facilities in high-resolution remote sensing images
    • R. R. Vatsavai, A. Cheriyadat, and S. S. Gleason. Unsupervised semantic labeling framework for identification of complex facilities in high-resolution remote sensing images. In ICDM Workshops, pages 273-280, 2010.
    • (2010) ICDM Workshops , pp. 273-280
    • Vatsavai, R.R.1    Cheriyadat, A.2    Gleason, S.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.