메뉴 건너뛰기




Volumn 47, Issue 5, 2009, Pages 1454-1466

Migratory logistic regression for learning concept drift between two data sets with application to UXO sensing

Author keywords

Concept drift; Inverse problems; Logistic regression; Signal processing

Indexed keywords

ACTIVE LEARNING; AUXILIARY VARIABLES; CONCEPT DRIFT; DATA SETS; DIFFERENT DISTRIBUTIONS; LOGISTIC REGRESSION; REAL MEASURED DATUM; SIMULATED DATUM; SOURCE DISTRIBUTIONS; TRAINING AND TESTING; UNEXPLODED ORDNANCES;

EID: 67349229152     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2008.2005268     Document Type: Article
Times cited : (33)

References (32)
  • 1
    • 3242661568 scopus 로고    scopus 로고
    • Sensing of unexploded ordnance with magnetometer and induction data: Theory and signal processing
    • May
    • Y. Zhang, L. Collins, H. Yu, C. E. Baum, and L. Carin, "Sensing of unexploded ordnance with magnetometer and induction data: Theory and signal processing," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 5, pp. 1005-1015, May 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.5 , pp. 1005-1015
    • Zhang, Y.1    Collins, L.2    Yu, H.3    Baum, C.E.4    Carin, L.5
  • 2
    • 1542596003 scopus 로고
    • Effective learning in dynamic environments by explicit concept tracking
    • P. B. Brazdil, Ed
    • G. Widmer and M. Kubat, "Effective learning in dynamic environments by explicit concept tracking," in Proc. Eur. Conf. Mach. Learning, P. B. Brazdil, Ed., 1993, pp. 224-227.
    • (1993) Proc. Eur. Conf. Mach. Learning , pp. 224-227
    • Widmer, G.1    Kubat, M.2
  • 4
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Sep
    • V. N. Vapnik, "An overview of statistical learning theory," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 6
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Apr
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr. 1996.
    • (1996) Mach. Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 7
    • 84892246520 scopus 로고    scopus 로고
    • Bayesian modeling of human concept learning
    • M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press
    • J. B. Tenenbaum, "Bayesian modeling of human concept learning," in Advances in Neural Information Processing Systems, vol. 11, M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Tenenbaum, J.B.1
  • 8
    • 0141804082 scopus 로고    scopus 로고
    • Detecting concept drift with support vectormachines
    • P. Langley, Ed
    • R. Klinkenberg and T. Joachims, "Detecting concept drift with support vectormachines," in Proc. 17th ICML, P. Langley, Ed., 2000, pp. 487-494.
    • (2000) Proc. 17th ICML , pp. 487-494
    • Klinkenberg, R.1    Joachims, T.2
  • 10
    • 36849093601 scopus 로고    scopus 로고
    • Concept drift and the importance of examples
    • J. Franke, G. Nakhaeizadeh, and I. Renz, Eds. Heidelberg, Germany: Physica- Verlag
    • R. Klinkenberg and S. Ruping, "Concept drift and the importance of examples," in Text Mining Theoretical Aspects and Applications, J. Franke, G. Nakhaeizadeh, and I. Renz, Eds. Heidelberg, Germany: Physica- Verlag, 2003, pp. 55-77.
    • (2003) Text Mining Theoretical Aspects and Applications , pp. 55-77
    • Klinkenberg, R.1    Ruping, S.2
  • 11
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Jan
    • J. Heckman, "Sample selection bias as a specification error," Econometrica, vol. 47, no. 1, pp. 153-161, Jan. 1979.
    • (1979) Econometrica , vol.47 , Issue.1 , pp. 153-161
    • Heckman, J.1
  • 12
    • 14344263218 scopus 로고    scopus 로고
    • Learning and evaluating classifiers under sample selection bias
    • B. Zadrozny, "Learning and evaluating classifiers under sample selection bias," in Proc. 21st ICML, 2004, pp. 903-910.
    • (2004) Proc , vol.21 st , Issue.ICML , pp. 903-910
    • Zadrozny, B.1
  • 15
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • Jul
    • D. J. C. MacKay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, Jul. 1992.
    • (1992) Neural Comput , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 17
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Cambridge, MA: MIT Press
    • A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," in Advances in Neural Information Processing Systems, vol. 7. Cambridge, MA: MIT Press, 1995, pp. 231-238.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 19
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Apr
    • J. Hanley and B. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, no. 1, pp. 29-36, Apr. 1982.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 20
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Jul
    • R. Caruana, "Multitask learning," Mach. Learn., vol. 28, no. 1, pp. 41-75, Jul. 1997.
    • (1997) Mach. Learn , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 21
    • 14344277592 scopus 로고    scopus 로고
    • A model of inductive bias learning
    • J. Baxter, "A model of inductive bias learning," J. Artif. Intell. Res., vol. 12, pp. 149-198, 2000.
    • (2000) J. Artif. Intell. Res , vol.12 , pp. 149-198
    • Baxter, J.1
  • 22
    • 31844442664 scopus 로고    scopus 로고
    • Learning Gaussian processes from multiple tasks
    • K. Yu, V. Tresp, and A. Schwaighofer, "Learning Gaussian processes from multiple tasks," in Proc. 22nd ICML, 2005, pp. 1012-1019.
    • (2005) Proc , vol.22 nd , Issue.ICML , pp. 1012-1019
    • Yu, K.1    Tresp, V.2    Schwaighofer, A.3
  • 23
    • 12244286335 scopus 로고    scopus 로고
    • Systematic data selection to mine concept-drifting data streams
    • W. Fan, "Systematic data selection to mine concept-drifting data streams," in Proc. KDD, 2004, pp. 128-137.
    • (2004) Proc. KDD , pp. 128-137
    • Fan, W.1
  • 24
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • Aug
    • R. Klinkenberg, "Learning drifting concepts: Example selection vs. example weighting," Intell. Data Anal. (IDA), vol. 8, no. 3, pp. 281-300, Aug. 2004.
    • (2004) Intell. Data Anal. (IDA) , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 25
    • 41849096368 scopus 로고    scopus 로고
    • Boosting classifiers for drifting concepts
    • IDA, Jan
    • M. Scholz and R. Klinkenberg, "Boosting classifiers for drifting concepts," Intell. Data Anal. (IDA), vol. 11, no. 1, pp. 3-28, Jan. 2007.
    • (2007) Intell. Data Anal , vol.11 , Issue.1 , pp. 3-28
    • Scholz, M.1    Klinkenberg, R.2
  • 26
    • 33750714949 scopus 로고    scopus 로고
    • Improving SVM accuracy by training on auxiliary data sources
    • P. Wu and T. G. Dietterich, "Improving SVM accuracy by training on auxiliary data sources," in Proc. 21st ICML, 2004, p. 110.
    • (2004) Proc , vol.21 st , Issue.ICML , pp. 110
    • Wu, P.1    Dietterich, T.G.2
  • 27
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Dec
    • B. Bakker and T. Heskes, "Task clustering and gating for Bayesian multitask learning," J. Mach. Learn. Res., vol. 4, no. 1, pp. 83-99, Dec. 2003.
    • (2003) J. Mach. Learn. Res , vol.4 , Issue.1 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 28
    • 38149099603 scopus 로고    scopus 로고
    • Radial basis function network for multi-task learning
    • Cambridge, MA: MIT Press
    • X. Liao and L. Carin, "Radial basis function network for multi-task learning," in Advances in Neural Information Processing Systems, vol. 18. Cambridge, MA: MIT Press, 2006, pp. 795-802.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 795-802
    • Liao, X.1    Carin, L.2
  • 29
    • 21844456299 scopus 로고    scopus 로고
    • Learning multiple tasks with kernel methods
    • Apr
    • T. Evgeniou, C. A. Micchelli, and M. Pontil, "Learning multiple tasks with kernel methods," J. Mach. Learn. Res., vol. 6, no. 1, pp. 615-637, Apr. 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , Issue.1 , pp. 615-637
    • Evgeniou, T.1    Micchelli, C.A.2    Pontil, M.3
  • 31
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Mar
    • T. Ferguson, "A Bayesian analysis of some nonparametric problems," Ann. Stat., vol. 1, no. 2, pp. 209-230, Mar. 1973.
    • (1973) Ann. Stat , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.1
  • 32
    • 33846487387 scopus 로고    scopus 로고
    • Multi-task learning for classification with Dirichlet process priors
    • May
    • Y. Xue, X. Liao, L. Carin, and B. Krishnapuram, "Multi-task learning for classification with Dirichlet process priors," J. Mach. Learn. Res. (JMLR), vol. 8, pp. 35-63, May 2007.
    • (2007) J. Mach. Learn. Res. (JMLR) , vol.8 , pp. 35-63
    • Xue, Y.1    Liao, X.2    Carin, L.3    Krishnapuram, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.