메뉴 건너뛰기




Volumn 18, Issue 8, 2011, Pages 466-469

Efficient multiple kernel support vector machine based voice activity detection

Author keywords

Data fusion; multiple kernel learning; receiver operating characteristic; voice activity detection

Indexed keywords

GLOBAL PERFORMANCE; MINIMUM CLASSIFICATION ERROR; MULTIPLE FEATURES; MULTIPLE KERNEL LEARNING; MULTIPLE KERNELS; RECEIVER OPERATING CHARACTERISTIC; RECEIVER OPERATING CHARACTERISTIC CURVES; SVM SOLVERS; VOICE ACTIVITY DETECTION;

EID: 79959756010     PISSN: 10709908     EISSN: None     Source Type: Journal    
DOI: 10.1109/LSP.2011.2159374     Document Type: Article
Times cited : (57)

References (15)
  • 1
    • 77950091897 scopus 로고    scopus 로고
    • Voice activity detection based on statistical models and machine learning approaches
    • J. W. Shin, J. H. Chang, and N. S. Kim, "Voice activity detection based on statistical models and machine learning approaches," Computer Speech & Language, vol. 24, no. 3, pp. 515-530, 2010.
    • (2010) Computer Speech & Language , vol.24 , Issue.3 , pp. 515-530
    • Shin, J.W.1    Chang, J.H.2    Kim, N.S.3
  • 2
    • 79952611095 scopus 로고    scopus 로고
    • Maximum margin clustering based statistical VAD with multiple observation compound feature
    • J. Wu and X. L. Zhang, "Maximum margin clustering based statistical VAD with multiple observation compound feature," IEEE Signal Process. Lett., vol. 18, no. 5, pp. 283-286, 2011.
    • (2011) IEEE Signal Process. Lett. , vol.18 , Issue.5 , pp. 283-286
    • Wu, J.1    Zhang, X.L.2
  • 4
    • 84863385308 scopus 로고    scopus 로고
    • An extended level method for efficient multiple kernel learning
    • Z. Xu, R. Jin, I. King, and M. R. Lyu, "An extended level method for efficient multiple kernel learning," in Proc. Adv. Neural Inf. Process. Syst., 2009, vol. 21, pp. 1825-1832.
    • (2009) Proc. Adv. Neural Inf. Process. Syst. , vol.21 , pp. 1825-1832
    • Xu, Z.1    Jin, R.2    King, I.3    Lyu, M.R.4
  • 5
    • 79952183228 scopus 로고    scopus 로고
    • Efficient sparse generalized multiple kernel learning
    • H. Yang, Z. Xu, J. Ye, I. King, andM. R. Lyu, "Efficient sparse generalized multiple kernel learning," IEEE Trans. Neural Netw., no. 3, pp. 433-446, 2011.
    • (2011) IEEE Trans. Neural Netw. , Issue.3 , pp. 433-446
    • Yang, H.1    Xu, Z.2    Ye, J.3    King, I.4    Lyu, M.R.5
  • 6
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • T. Joachims, "A support vector method for multivariate performance measures," in Proc. 22nd Int. Conf.Mach. Learn., 2005, pp. 384-392.
    • (2005) Proc. 22nd Int. Conf.Mach. Learn. , pp. 384-392
    • Joachims, T.1
  • 8
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • T. Joachims, T. Finley, and C.N. J.Yu, "Cutting-plane training of structural SVMs," Mach. Learn., vol. 77, no. 1, pp. 27-59, 2009.
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.N.J.3
  • 9
    • 68949154453 scopus 로고    scopus 로고
    • Sparse kernel SVMs via cutting-plane training
    • T. Joachims and C. N. J. Yu, "Sparse kernel SVMs via cutting-plane training," Mach. Learn., vol. 76, no. 2, pp. 179-193, 2009.
    • (2009) Mach. Learn. , vol.76 , Issue.2 , pp. 179-193
    • Joachims, T.1    Yu, C.N.J.2
  • 10
    • 77956289831 scopus 로고    scopus 로고
    • Discriminative training for multiple observation likelihood ratio based voice activity detection
    • Nov.
    • T. Yu and J. H. L. Hansen, "Discriminative training for multiple observation likelihood ratio based voice activity detection," IEEE Signal Process. Lett., vol. 17, pp. 897-900, Nov. 2010.
    • (2010) IEEE Signal Process. Lett. , vol.17 , pp. 897-900
    • Yu, T.1    Hansen, J.H.L.2
  • 12
    • 79959744896 scopus 로고    scopus 로고
    • svm-perf toolbox [Online]. Available:
    • T. Joachims, svm-perf toolbox [Online]. Available: http://svmlight. joachims.org/svm-perf.html
    • Joachims, T.1
  • 13
    • 84987702417 scopus 로고    scopus 로고
    • The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions
    • D. Pearce and H. Hirsch et al., "The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions," in Proc. ICSLP00, 2000, vol. 4, pp. 29-32.
    • (2000) Proc. ICSLP00 , vol.4 , pp. 29-32
    • Pearce, D.1    Hirsch, H.2
  • 14
    • 64149119904 scopus 로고    scopus 로고
    • Improved voice activity detection using contextual multiple hypothesis testing for robust speech recognition
    • J. Ramírez, J. Segura, J. Góorriz, and L. García, "Improved voice activity detection using contextual multiple hypothesis testing for robust speech recognition," IEEE Trans. Audio, Speech, Language Process., vol. 15, no. 8, pp. 2177-2189, 2007.
    • (2007) IEEE Trans. Audio, Speech, Language Process. , vol.15 , Issue.8 , pp. 2177-2189
    • Ramírez, J.1    Segura, J.2    Góorriz, J.3    García, L.4
  • 15
    • 23344452899 scopus 로고    scopus 로고
    • Statistical voice activity detection using a multiple observation likelihood ratio test
    • DOI 10.1109/LSP.2005.855551
    • J. Ramírez, J. Segura, C. Benítez, L. García, and A. Rubio, "Statistical voice activity detection using a multiple observation likelihood ratio test," IEEE Signal Process. Lett., vol. 12, no. 10, pp. 689-692, 2005. (Pubitemid 41448576)
    • (2005) IEEE Signal Processing Letters , vol.12 , Issue.10 , pp. 689-692
    • Ramirez, J.1    Segura, J.C.2    Benitez, C.3    Garcia, L.4    Rubio, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.