메뉴 건너뛰기




Volumn 52, Issue 2, 2011, Pages 77-90

Modern parameterization and explanation techniques in diagnostic decision support system: A case study in diagnostics of coronary artery disease

Author keywords

Association rules; Coronary artery disease diagnostics; Machine learning; Multi resolution image parameterization; Principal component analysis

Indexed keywords

AUTOMATIC CLASSIFIERS; BUILDING MACHINES; CLINICAL PRACTICES; CLINICAL SETTINGS; CORONARY ANGIOGRAPHY; CORONARY ARTERY DISEASE; DIAGNOSTIC ACCURACY; DIAGNOSTIC DECISIONS; DIAGNOSTIC PERFORMANCE; DIAGNOSTIC PROBLEM; DIAGNOSTIC PROCEDURE; DIAGNOSTIC QUALITY; EARLY DIAGNOSIS; GOLD STANDARDS; IMAGE PARAMETERS; INEXPENSIVE MEANS; MACHINE LEARNING METHODS; MACHINE-LEARNING; MEDICAL IMAGES; MULTIPLE RESOLUTIONS; MULTIRESOLUTION IMAGES; MYOCARDIAL PERFUSION; NON-INVASIVE; PARAMETERIZED; PRINCIPAL COMPONENTS; REFERENCE METHOD; SCINTIGRAPHIC IMAGES; SYNTHETIC DATASETS; TEXTURE DESCRIPTION;

EID: 79959744776     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2011.04.009     Document Type: Article
Times cited : (18)

References (59)
  • 1
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D.G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2004, 60(2):91-110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 5
    • 0005662389 scopus 로고
    • The probability of a correct diagnosis
    • Kluwer Academic Publishers, Dordrecht, The Netherlands, J. Candell-Riera, D. Ortega-Alcalde (Eds.)
    • Olona-Cabases M. The probability of a correct diagnosis. Nuclear cardiology in everyday practice 1994, 348-357. Kluwer Academic Publishers, Dordrecht, The Netherlands. J. Candell-Riera, D. Ortega-Alcalde (Eds.).
    • (1994) Nuclear cardiology in everyday practice , pp. 348-357
    • Olona-Cabases, M.1
  • 6
    • 0000489573 scopus 로고
    • Computer-assisted interpretation of noninvasive tests for diagnosis of coronary artery disease
    • Pollock B.H. Computer-assisted interpretation of noninvasive tests for diagnosis of coronary artery disease. Cardiovascular Reviews and Reports 1983, 4:367-375.
    • (1983) Cardiovascular Reviews and Reports , vol.4 , pp. 367-375
    • Pollock, B.H.1
  • 9
    • 11844267162 scopus 로고    scopus 로고
    • Artificial neural network modeling of stress single-photon emission computed tomographic imaging for detecting extensive coronary artery disease
    • Allison J.S., Heo J., Iskandrian A.E. Artificial neural network modeling of stress single-photon emission computed tomographic imaging for detecting extensive coronary artery disease. The American Journal of Cardiology 2005, 95(2):178-181.
    • (2005) The American Journal of Cardiology , vol.95 , Issue.2 , pp. 178-181
    • Allison, J.S.1    Heo, J.2    Iskandrian, A.E.3
  • 10
    • 0034159892 scopus 로고    scopus 로고
    • Predictions of coronary artery stenosis by artificial neural network
    • Mobley B.A., Schechter E., Moore W.E. Predictions of coronary artery stenosis by artificial neural network. Artificial Intelligence in Medicine 2000, 18(3):187-203.
    • (2000) Artificial Intelligence in Medicine , vol.18 , Issue.3 , pp. 187-203
    • Mobley, B.A.1    Schechter, E.2    Moore, W.E.3
  • 11
    • 0346218243 scopus 로고    scopus 로고
    • WeAidU-a decision support system for myocardial perfusion images using artificial neural networks
    • Ohlsson M. WeAidU-a decision support system for myocardial perfusion images using artificial neural networks. Artificial Intelligence in Medicine 2004, 30:49-60.
    • (2004) Artificial Intelligence in Medicine , vol.30 , pp. 49-60
    • Ohlsson, M.1
  • 13
    • 0038500689 scopus 로고    scopus 로고
    • Active subgroup mining: a case study in coronary heart disease risk group detection
    • Gamberger D., Lavrač N., Krstačič G. Active subgroup mining: a case study in coronary heart disease risk group detection. Artificial Intelligence in Medicine 2003, 28(1):27-57.
    • (2003) Artificial Intelligence in Medicine , vol.28 , Issue.1 , pp. 27-57
    • Gamberger, D.1    Lavrač, N.2    Krstačič, G.3
  • 16
    • 34548286876 scopus 로고    scopus 로고
    • From pixels to semantic spaces:advances in content-based image retrieval
    • Vasconcelos N. From pixels to semantic spaces:advances in content-based image retrieval. Computer 2007, 40(7):20-26.
    • (2007) Computer , vol.40 , Issue.7 , pp. 20-26
    • Vasconcelos, N.1
  • 18
    • 43949092781 scopus 로고    scopus 로고
    • Multiresolution image parametrization for improving texture classification
    • Šajn L., Kononenko I. Multiresolution image parametrization for improving texture classification. EURASIP Journal on Advances in Signal Processing 2008, 2008(1):1-12.
    • (2008) EURASIP Journal on Advances in Signal Processing , vol.2008 , Issue.1 , pp. 1-12
    • Šajn, L.1    Kononenko, I.2
  • 20
    • 84857797658 scopus 로고    scopus 로고
    • Image segmentation and parametrization for automatic diagnostics of whole-body scintigrams
    • CRC Press; Taylor & Francis Group, Boca Raton, London, New York, G. Schaefer, A. Hassanien, J. Jiang (Eds.)
    • Šajn L., Kononenko I. Image segmentation and parametrization for automatic diagnostics of whole-body scintigrams. Computational intelligence in medical imaging: techniques & applications 2009, 347-377. CRC Press; Taylor & Francis Group, Boca Raton, London, New York. G. Schaefer, A. Hassanien, J. Jiang (Eds.).
    • (2009) Computational intelligence in medical imaging: techniques & applications , pp. 347-377
    • Šajn, L.1    Kononenko, I.2
  • 22
    • 33646077220 scopus 로고    scopus 로고
    • Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis
    • Peng Y., Yao B., Jiang J. Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis. Artificial Intelligence in Medicine 2006, 37(1):43-53.
    • (2006) Artificial Intelligence in Medicine , vol.37 , Issue.1 , pp. 43-53
    • Peng, Y.1    Yao, B.2    Jiang, J.3
  • 24
    • 35048892877 scopus 로고    scopus 로고
    • Multi-resolution image parametrization in sequential diagnostics of coronary artery disease
    • Springer, Berlin, Heidelberg, R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.)
    • Kukar M., Šajn L., Grošelj C., Grošelj J. Multi-resolution image parametrization in sequential diagnostics of coronary artery disease. Proc. artificial intelligence in medicine 2007, 119-129. Springer, Berlin, Heidelberg. R. Bellazzi, A. Abu-Hanna, J. Hunter (Eds.).
    • (2007) Proc. artificial intelligence in medicine , pp. 119-129
    • Kukar, M.1    Šajn, L.2    Grošelj, C.3    Grošelj, J.4
  • 25
    • 0027682531 scopus 로고
    • Inductive and Bayesian learning in medical diagnosis
    • Kononenko I. Inductive and Bayesian learning in medical diagnosis. Applied Artificial Intelligence 1993, 7:317-337.
    • (1993) Applied Artificial Intelligence , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 26
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: history, state of the art and perspective
    • Kononenko I. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine 2001, 3:89-109.
    • (2001) Artificial Intelligence in Medicine , vol.3 , pp. 89-109
    • Kononenko, I.1
  • 29
    • 0003112904 scopus 로고    scopus 로고
    • Texture analysis
    • World Scientific Publishing Company, New Jersey, USA, C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.)
    • Tüceryan M., Jain A.K. Texture analysis. The handbook of pattern recognition and computer vision 1998, 207-248. World Scientific Publishing Company, New Jersey, USA. 2nd ed. C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.).
    • (1998) The handbook of pattern recognition and computer vision , pp. 207-248
    • Tüceryan, M.1    Jain, A.K.2
  • 32
    • 79959738799 scopus 로고
    • Textured image segmentation. PhD thesis, Dept. Electrical Engineering, University of Southern California, Los Angeles, CA, USA;
    • Laws KI. Textured image segmentation. PhD thesis, Dept. Electrical Engineering, University of Southern California, Los Angeles, CA, USA; 1980.
    • (1980)
    • Laws, K.I.1
  • 35
    • 34548104873 scopus 로고    scopus 로고
    • Towards symbolic mining of images with association rules: preliminary results on textures
    • Bevk M., Kononenko I. Towards symbolic mining of images with association rules: preliminary results on textures. Intelligent Data Analysis 2006, 10(4):379-393.
    • (2006) Intelligent Data Analysis , vol.10 , Issue.4 , pp. 379-393
    • Bevk, M.1    Kononenko, I.2
  • 36
    • 0003112904 scopus 로고    scopus 로고
    • Texture analysis
    • World Scientific Publishing Company, New Jersey, USA, C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.)
    • Tüceryan M., Jain A.K. Texture analysis. The handbook of pattern recognition and computer vision 1993, 235-276. World Scientific Publishing Company, New Jersey, USA. C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.).
    • (1993) The handbook of pattern recognition and computer vision , pp. 235-276
    • Tüceryan, M.1    Jain, A.K.2
  • 41
    • 0033101403 scopus 로고    scopus 로고
    • Segmentation of textured images using a multiresolution gaussian autoregressive model
    • 3
    • Comer M.L., Delp E.J. Segmentation of textured images using a multiresolution gaussian autoregressive model. IEEE Transactions on Image Processing 1999, 8(3):408-420. 3.
    • (1999) IEEE Transactions on Image Processing , vol.8 , Issue.3 , pp. 408-420
    • Comer, M.L.1    Delp, E.J.2
  • 44
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • Rissanen J. A universal prior for integers and estimation by minimum description length. The Annals of Statistics 1993, 11:416-431.
    • (1993) The Annals of Statistics , vol.11 , pp. 416-431
    • Rissanen, J.1
  • 46
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Annals of Eugenics 1936, 7:179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 48
    • 24544432503 scopus 로고    scopus 로고
    • Impact of machine learning to the diagnostic certainty of the patient's group with low coronary artery disease probability
    • Jožef Stefan Institute, Bled, Slovenia, I. Kononenko, T. Urbančič (Eds.)
    • Grošelj C., Kukar M., Fettich J., Kononenko I. Impact of machine learning to the diagnostic certainty of the patient's group with low coronary artery disease probability. Proc. computer-aided data analysis in medicine 1997, 68-74. Jožef Stefan Institute, Bled, Slovenia. I. Kononenko, T. Urbančič (Eds.).
    • (1997) Proc. computer-aided data analysis in medicine , pp. 68-74
    • Grošelj, C.1    Kukar, M.2    Fettich, J.3    Kononenko, I.4
  • 50
    • 0031765718 scopus 로고    scopus 로고
    • Scintigraphic diagnosis of coronary artery disease: myocardial bull's-eye images contain the important information
    • Lindahl D., Palmer J., Pettersson J., White T., Lundin A., Edenbrandt L. Scintigraphic diagnosis of coronary artery disease: myocardial bull's-eye images contain the important information. Clinical Physiology 1998, 6(18).
    • (1998) Clinical Physiology , vol.6 , Issue.18
    • Lindahl, D.1    Palmer, J.2    Pettersson, J.3    White, T.4    Lundin, A.5    Edenbrandt, L.6
  • 51
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Robnik-Šikonja M., Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 2003, 53:23-69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 52
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Morgan Kaufmann, New York, R. Bajcsy (Ed.)
    • Fayyad U.M. Multi-interval discretization of continuous-valued attributes for classification learning. Proc. international joint conferences on artificial intelligence 1993, 1022-1027. Morgan Kaufmann, New York. R. Bajcsy (Ed.).
    • (1993) Proc. international joint conferences on artificial intelligence , pp. 1022-1027
    • Fayyad, U.M.1
  • 54
    • 79959754476 scopus 로고    scopus 로고
    • Orange: from experimental machine learning to interactive data mining, white paper, ; [accessed 16.08.09].
    • Demšar J, Zupan B, Leban G. Orange: from experimental machine learning to interactive data mining, white paper, ; 2004 [accessed 16.08.09]. http://www.ailab.si/orange.
    • (2004)
    • Demšar, J.1    Zupan, B.2    Leban, G.3
  • 59
    • 76749170318 scopus 로고    scopus 로고
    • An efficient explanation of individual classifications using game theory
    • Štrumbelj E., Kononenko I. An efficient explanation of individual classifications using game theory. Journal of Machine Learning Research 2010, 11:1-18.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1-18
    • Štrumbelj, E.1    Kononenko, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.