메뉴 건너뛰기




Volumn 51, Issue 4, 2011, Pages 1458-1469

Bayesian estimation of the additive main effects and multiplicative interaction model

Author keywords

[No Author keywords available]

Indexed keywords

ZEA MAYS;

EID: 79959603283     PISSN: 0011183X     EISSN: 14350653     Source Type: Journal    
DOI: 10.2135/cropsci2010.06.0343     Document Type: Article
Times cited : (41)

References (46)
  • 1
    • 33847284571 scopus 로고    scopus 로고
    • Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes
    • Burgueño, J., J. Crossa, P.L. Cornelius, R. Trethowan, G. McLaren, and A. Krishnamachari. 2007. Modeling additive × environment and additive × additive × environment using genetic covariances of relatives of wheat genotypes. Crop Sci. 47:311-320.
    • (2007) Crop Sci , vol.47 , pp. 311-320
    • Burgueño, J.1    Crossa, J.2    Cornelius, P.L.3    Trethowan, R.4    McLaren, G.5    Krishnamachari, A.6
  • 2
    • 49149089736 scopus 로고    scopus 로고
    • Using factor analytic models for joining environments and genotypes without crossover genotype × environment interaction
    • Burgueño, J., J. Crossa, P.L. Cornelius, and R.-C. Yang. 2008. Using factor analytic models for joining environments and genotypes without crossover genotype × environment interaction. Crop Sci. 48:1291-1305.
    • (2008) Crop Sci , vol.48 , pp. 1291-1305
    • Burgueño, J.1    Crossa, J.2    Cornelius, P.L.3    Yang, R.-C.4
  • 3
    • 0033245240 scopus 로고    scopus 로고
    • Monte Carlo estimation of Bayes credible and HPD interval
    • Chen, M.H., and Q.M. Shao. 1999. Monte Carlo estimation of Bayes credible and HPD interval. J. Comput. Graph. Statist. 8:69-92.
    • (1999) J. Comput. Graph. Statist , vol.8 , pp. 69-92
    • Chen, M.H.1    Shao, Q.M.2
  • 4
    • 0032811688 scopus 로고    scopus 로고
    • Prediction assessment of shrinkage estimators of multiplicative models for multi-environment cultivar trials
    • Cornelius, P.L., and J. Crossa. 1999. Prediction assessment of shrinkage estimators of multiplicative models for multi-environment cultivar trials. Crop Sci. 39:998-1009.
    • (1999) Crop Sci , vol.39 , pp. 998-1009
    • Cornelius, P.L.1    Crossa, J.2
  • 5
    • 0009684592 scopus 로고    scopus 로고
    • Statistical tests and estimators of multiplicative models for genotype-byenvironment interaction
    • In M.S. Kang and H.G. Gauch (ed,), CRC Press, Boca Raton, FL
    • Cornelius, P.L., J. Crossa, and M.S. Seyedsadr. 1996. Statistical tests and estimators of multiplicative models for genotype-byenvironment interaction. p. 199-234 In M.S. Kang and H.G. Gauch (ed,) Genotype-by-environment interaction. CRC Press, Boca Raton, FL.
    • (1996) Genotype-by-environment Interaction , pp. 199-234
    • Cornelius, P.L.1    Crossa, J.2    Seyedsadr, M.S.3
  • 6
    • 0038867591 scopus 로고    scopus 로고
    • Estimation of general linear-bilinear models for two-way tables
    • Cornelius, P.L., and M.S. Seyedsadr. 1997. Estimation of general linear-bilinear models for two-way tables. J. Stat. Comput. Sim. 58:287-322.
    • (1997) J. Stat. Comput. Sim , vol.58 , pp. 287-322
    • Cornelius, P.L.1    Seyedsadr, M.S.2
  • 7
    • 33845654909 scopus 로고    scopus 로고
    • A Bayesian approach for assessing the stability of genotype
    • Cotes, J.M., J. Crossa, A. Sanches, and P.L. Cornelius. 2006. A Bayesian approach for assessing the stability of genotype. Crop Sci. 46:2654-2665.
    • (2006) Crop Sci , vol.46 , pp. 2654-2665
    • Cotes, J.M.1    Crossa, J.2    Sanches, A.3    Cornelius, P.L.4
  • 8
    • 33746061693 scopus 로고    scopus 로고
    • Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes
    • Crossa, J., J. Burgueno, P.L. Cornelius, G. McLaren, R. Trethowan, and A. Krishnamachari. 2006. Modeling genotype × environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci. 46:1722-1733.
    • (2006) Crop Sci , vol.46 , pp. 1722-1733
    • Crossa, J.1    Burgueno, J.2    Cornelius, P.L.3    McLaren, G.4    Trethowan, R.5    Krishnamachari, A.6
  • 9
    • 0030892374 scopus 로고    scopus 로고
    • Sites regression and shifted multiplicative models clustering of cultivar trials sites under heterogeneity of error variance
    • Crossa, J., and P.L. Cornelius. 1997. Sites regression and shifted multiplicative models clustering of cultivar trials sites under heterogeneity of error variance. Crop Sci. 37:406-415.
    • (1997) Crop Sci , vol.37 , pp. 406-415
    • Crossa, J.1    Cornelius, P.L.2
  • 10
    • 33646039536 scopus 로고    scopus 로고
    • Studying crossover genotype × environment interaction using linear-bilinear models and mixed models
    • Crossa, J., R.-C. Yang, and P.L. Cornelius. 2004. Studying crossover genotype × environment interaction using linear-bilinear models and mixed models. J. Agric. Biol. Environ. Stat. 9:362-380.
    • (2004) J. Agric. Biol. Environ. Stat , vol.9 , pp. 362-380
    • Crossa, J.1    Yang, R.-C.2    Cornelius, P.L.3
  • 11
    • 21844496030 scopus 로고
    • Asymptotic covariances for parameters of biadditive models
    • Denis, J.-B., and J.C. Gower. 1994. Asymptotic covariances for parameters of biadditive models. Util. Math. 46:193-205.
    • (1994) Util. Math , vol.46 , pp. 193-205
    • Denis, J.-B.1    Gower, J.C.2
  • 12
    • 0040062205 scopus 로고    scopus 로고
    • Asymptotic confidence regions for biadditive models: Interpreting genotype-environment interactions
    • Denis, J.-B., and J.C. Gower. 1996. Asymptotic confidence regions for biadditive models: Interpreting genotype-environment interactions. Appl. Stat. 45:479-493.
    • (1996) Appl. Stat , vol.45 , pp. 479-493
    • Denis, J.-B.1    Gower, J.C.2
  • 13
    • 0010591925 scopus 로고    scopus 로고
    • Bias of LS estimators in nonlinear regression models with constraints. Part II: Biadditive models
    • Denis, J.-B., and A. Pazman. 1999. Bias of LS estimators in nonlinear regression models with constraints. Part II: Biadditive models. Appl. Math. 44:375-403.
    • (1999) Appl. Math , vol.44 , pp. 375-403
    • Denis, J.-B.1    Pazman, A.2
  • 14
    • 0001984758 scopus 로고
    • Stability parameters for comparing varieties
    • Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing varieties. Crop Sci. 6:36-40.
    • (1966) Crop Sci , vol.6 , pp. 36-40
    • Eberhart, S.A.1    Russell, W.A.2
  • 15
    • 33644982095 scopus 로고    scopus 로고
    • Bayesian modeling of heterogeneous error and genotype × environment interaction variances
    • Edwards, J.W., and J.-L. Jannink. 2006. Bayesian modeling of heterogeneous error and genotype × environment interaction variances. Crop Sci. 46:820-833.
    • (2006) Crop Sci , vol.46 , pp. 820-833
    • Edwards, J.W.1    Jannink, J.-L.2
  • 16
    • 84970558538 scopus 로고
    • The analysis of adaptation in a plant breeding programme
    • Finlay, K.W., and G.N. Wilkinson. 1963. The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Res. 14:742-754.
    • (1963) Aust. J. Agric. Res , vol.14 , pp. 742-754
    • Finlay, K.W.1    Wilkinson, G.N.2
  • 17
    • 84984844311 scopus 로고    scopus 로고
    • Statistical analysis of successive series of experiments in plant breeding: A Bayesian approach
    • In A. Gallais, C. Dillmann, and I. Goldringer (ed.), INRA Editions, Versailles, France
    • Foucteau, V., and J.-B. Denis. 2000. Statistical analysis of successive series of experiments in plant breeding: A Bayesian approach. p. 49-56 In A. Gallais, C. Dillmann, and I. Goldringer (ed.) Eucarpia, quantitative genetics and breeding methods: The way ahead. INRA Editions, Versailles, France.
    • (2000) Eucarpia, Quantitative Genetics and Breeding Methods: The Way Ahead , pp. 49-56
    • Foucteau, V.1    Denis, J.-B.2
  • 18
    • 6844250855 scopus 로고
    • Using interaction to improve yield estimates
    • In M.S. Kang (ed), Department of Agronomy, Louisiana State University, Baton Rouge, LA
    • Gauch, H.G. 1990. Using interaction to improve yield estimates. p. 141-150 In M.S. Kang (ed) Genotype-by-environment interaction and plant breeding. Department of Agronomy, Louisiana State University, Baton Rouge, LA.
    • (1990) Genotype-by-environment Interaction and Plant Breeding , pp. 141-150
    • Gauch, H.G.1
  • 19
    • 33746087646 scopus 로고    scopus 로고
    • Statistical analysis of yield trials by AMMI and GGE
    • Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46:1488-1500.
    • (2006) Crop Sci , vol.46 , pp. 1488-1500
    • Gauch, H.G.1
  • 20
    • 46849090732 scopus 로고    scopus 로고
    • Statistical analysis of yield trials by AMMI and GGE: Further considerations
    • Gauch, H.G., H.-P. Piepho, and P. Annicchiarico. 2008. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48:866-889.
    • (2008) Crop Sci , vol.48 , pp. 866-889
    • Gauch, H.G.1    Piepho, H.-P.2    Annicchiarico, P.3
  • 21
    • 0002040725 scopus 로고    scopus 로고
    • AMMI analysis of yield trials
    • In M.S. Kang and H.G. Gauch (ed.), CRC Press, Boca Raton, FL
    • Gauch, H.G., and R.W. Zobel. 1996. AMMI analysis of yield trials. p. 85-122 In M.S. Kang and H.G. Gauch (ed.) Genotypeby-environment interaction. CRC Press, Boca Raton, FL.
    • (1996) Genotypeby-environment Interaction , pp. 85-122
    • Gauch, H.G.1    Zobel, R.W.2
  • 23
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and D.B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Stat. Sci. 7:457-511.
    • (1992) Stat. Sci , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 25
    • 0020850136 scopus 로고
    • Simulation run length control in the presence of an initial transient
    • Heidelberger, P., and P.D. Welch. 1983. Simulation run length control in the presence of an initial transient. Opns Res. 31:1109-1144.
    • (1983) Opns Res , vol.31 , pp. 1109-1144
    • Heidelberger, P.1    Welch, P.D.2
  • 26
    • 0030327881 scopus 로고    scopus 로고
    • The effect of improper priors on Gibbs sampling in hierarchical linear mixed models
    • Hobert, J.P., and G. Casella. 1996. The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. J. Am. Stat. Assoc. 91:1461-1473.
    • (1996) J. Am. Stat. Assoc , vol.91 , pp. 1461-1473
    • Hobert, J.P.1    Casella, G.2
  • 27
    • 15944421851 scopus 로고    scopus 로고
    • Bayesian inference for the RC(m) association model
    • Kateri, M., A. Nicolaou, and I. Ntzoufras. 2005. Bayesian inference for the RC(m) association model. J. Comput. Graph. Stat. 14:116-138.
    • (2005) J. Comput. Graph. Stat , vol.14 , pp. 116-138
    • Kateri, M.1    Nicolaou, A.2    Ntzoufras, I.3
  • 28
    • 0001363964 scopus 로고
    • The use of biplots in interpreting variety by environment interactions
    • Kempton, R.A. 1984. The use of biplots in interpreting variety by environment interactions. J. Agric. Sci. 103:123-135.
    • (1984) J. Agric. Sci , vol.103 , pp. 123-135
    • Kempton, R.A.1
  • 29
    • 0001133462 scopus 로고
    • Non-additivity in two-way analysis of variance
    • Mandel, J. 1961. Non-additivity in two-way analysis of variance. J. Am. Stat. Assoc. 56:878-888.
    • (1961) J. Am. Stat. Assoc , vol.56 , pp. 878-888
    • Mandel, J.1
  • 30
    • 0014582761 scopus 로고
    • The partitioning of interactions in analysis of variance
    • Mandel, J. 1969. The partitioning of interactions in analysis of variance. J. Res. Natl. Bur. Stand. 73:309-328.
    • (1969) J. Res. Natl. Bur. Stand , vol.73 , pp. 309-328
    • Mandel, J.1
  • 33
    • 33747628581 scopus 로고    scopus 로고
    • Joint modeling of additive and non-additive genetic line effects in single field trials
    • Oakey, H., A. Verbyla, W. Pitchford, B. Cullis, and H. Kuchel. 2006. Joint modeling of additive and non-additive genetic line effects in single field trials. Theor. Appl. Genet. 113:809-819.
    • (2006) Theor. Appl. Genet , vol.113 , pp. 809-819
    • Oakey, H.1    Verbyla, A.2    Pitchford, W.3    Cullis, B.4    Kuchel, H.5
  • 34
    • 0030898879 scopus 로고    scopus 로고
    • Analyzing genotype-environment data by mixed models with multiplicative terms
    • Piepho, H.-P. 1997. Analyzing genotype-environment data by mixed models with multiplicative terms. Biometrics 53:761-767.
    • (1997) Biometrics , vol.53 , pp. 761-767
    • Piepho, H.-P.1
  • 35
    • 0031874045 scopus 로고    scopus 로고
    • Empirical best linear unbiased prediction in cultivar trials using factor analytic variance-covariance structures
    • Piepho, H.-P. 1998. Empirical best linear unbiased prediction in cultivar trials using factor analytic variance-covariance structures. Theor. Appl. Genet. 97:195-201.
    • (1998) Theor. Appl. Genet , vol.97 , pp. 195-201
    • Piepho, H.-P.1
  • 36
    • 32344445592 scopus 로고    scopus 로고
    • Selection in cultivar trials - Is it ignorable?
    • Piepho, H.-P., and J. Mohring. 2006. Selection in cultivar trials - Is it ignorable? Crop Sci. 46:192-201.
    • (2006) Crop Sci , vol.46 , pp. 192-201
    • Piepho, H.-P.1    Mohring, J.2
  • 37
    • 1242281714 scopus 로고
    • The number of iterations, convergence diagnostics and generic Metropolis algorithms
    • In W.R. Gilks, D.J. Spiegelhalter and S. Richardson (ed.), Chapman and Hall, London, UK
    • Raftery, A.E., and S.M. Lewis. 1995. The number of iterations, convergence diagnostics and generic Metropolis algorithms. In W.R. Gilks, D.J. Spiegelhalter and S. Richardson (ed.) Practical Markov chain Monte Carlo. Chapman and Hall, London, UK.
    • (1995) Practical Markov Chain Monte Carlo
    • Raftery, A.E.1    Lewis, S.M.2
  • 39
    • 0015410801 scopus 로고
    • Some statistical aspects of partitioning genotype-environment components of variability
    • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environment components of variability. Heredity 29:237-245.
    • (1972) Heredity , vol.29 , pp. 237-245
    • Shukla, G.K.1
  • 40
    • 0035181008 scopus 로고    scopus 로고
    • Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend
    • Smith, A.B., B.R. Cullis, and R. Thompson. 2001. Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138-1147.
    • (2001) Biometrics , vol.57 , pp. 1138-1147
    • Smith, A.B.1    Cullis, B.R.2    Thompson, R.3
  • 41
    • 5444224069 scopus 로고    scopus 로고
    • A Bayesian approach to regional and local-area prediction from crop variety trials
    • Theobald, C., M. Talbot, and F. Nabugoomu. 2002. A Bayesian approach to regional and local-area prediction from crop variety trials. J. Agric. Biol. Environ. Stat. 7:403-419.
    • (2002) J. Agric. Biol. Environ. Stat , vol.7 , pp. 403-419
    • Theobald, C.1    Talbot, M.2    Nabugoomu, F.3
  • 42
    • 0345447596 scopus 로고    scopus 로고
    • A sparse implementation of the Average Information algorithm for factor analytic and reduced rank variance models
    • Thompson, R., B.R. Cullis, A.B. Smith, and A.R. Gilmour. 2003. A sparse implementation of the Average Information algorithm for factor analytic and reduced rank variance models. Aust. NZ. J. Stat. 45:445-460.
    • (2003) Aust. NZ. J. Stat , vol.45 , pp. 445-460
    • Thompson, R.1    Cullis, B.R.2    Smith, A.B.3    Gilmour, A.R.4
  • 43
    • 0040516741 scopus 로고    scopus 로고
    • Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler information
    • Viele, K., and C. Srinivasan. 2000. Parsimonious estimation of multiplicative interaction in analysis of variance using Kullback-Leibler information. J. Stat. Plan. Infer. 84:201-219.
    • (2000) J. Stat. Plan. Infer , vol.84 , pp. 201-219
    • Viele, K.1    Srinivasan, C.2
  • 44
    • 34247244168 scopus 로고    scopus 로고
    • GGE biplot vs. AMMI analysis of genotype-by-environment data
    • Yan, W., M.S. Kang, B. Ma, S. Woods, and P.L. Cornelius. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 47:643-655.
    • (2007) Crop Sci , vol.47 , pp. 643-655
    • Yan, W.1    Kang, M.S.2    Ma, B.3    Woods, S.4    Cornelius, P.L.5
  • 45
    • 34247247873 scopus 로고    scopus 로고
    • Biplot analysis of multi-environment trial data: Principles and applications
    • Yan, W., and N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 86:623-645.
    • (2006) Can. J. Plant Sci , vol.86 , pp. 623-645
    • Yan, W.1    Tinker, N.A.2
  • 46
    • 70349223758 scopus 로고    scopus 로고
    • Biplot analysis of genotype × environment interaction: Proceed with caution
    • Yang, R.-C., J. Crossa, P.L. Cornelius, and J. Burgueño. 2009. Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Sci. 49:1564-1576.
    • (2009) Crop Sci , vol.49 , pp. 1564-1576
    • Yang, R.-C.1    Crossa, J.2    Cornelius, P.L.3    Burgueño, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.