메뉴 건너뛰기




Volumn 27, Issue 13, 2011, Pages

Identification of metabolic network models from incomplete high-throughput datasets

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI;

EID: 79959406807     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr225     Document Type: Article
Times cited : (19)

References (34)
  • 1
    • 58849106769 scopus 로고    scopus 로고
    • Systems biology: Parameter estimation for biochemical models
    • Ashyraliyev,M. et al. (2009) Systems biology: Parameter estimation for biochemical models. FEBS J., 276, 886-902.
    • (2009) FEBS J. , vol.276 , pp. 886-902
    • Ashyraliyev, M.1
  • 2
    • 33646352736 scopus 로고    scopus 로고
    • A quantitative approach to catabolite repression in Escherichia coli
    • Bettenbrock,K. et al. (2005) A quantitative approach to catabolite repression in Escherichia coli. J. Biol. Chem., 281, 2578-2584.
    • (2005) J. Biol. Chem. , vol.281 , pp. 2578-2584
    • Bettenbrock, K.1
  • 3
    • 84944416149 scopus 로고    scopus 로고
    • Incremental singular value decomposition of uncertain data with missing values
    • Heyden,A. et al. (eds), of Lecture Notes in Computer Science, Springer, Berlin/Heidelberg
    • Brand,M. (2002) Incremental singular value decomposition of uncertain data with missing values. In Heyden,A. et al. (eds), Proceedings of the 7th European Conference Computer Vision (ECCV 2002),Vol. 2350 of Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, pp. 707-20.
    • (2002) Proceedings of the 7th European Conference Computer Vision (ECCV 2002) , vol.2350 , pp. 707-720
    • Brand, M.1
  • 4
    • 77952953154 scopus 로고    scopus 로고
    • Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations
    • Costa,R. et al. (2010) Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations. iosystems, 100, 150-158.
    • (2010) Biosystems , vol.100 , pp. 150-158
    • Costa, R.1
  • 6
    • 79959426831 scopus 로고    scopus 로고
    • System identification challenges from systems biology
    • (SYSID 2006), Newcastle, Australia
    • Crampin,E. (2006) System identification challenges from systems biology. In Proceedings of the 14th IFAC Symposium System Identification (SYSID 2006), ewcastle, Australia, pp. 81-93.
    • (2006) Proceedings of the 14th IFAC Symposium System Identification , pp. 81-93
    • Crampin, E.1
  • 7
    • 44949171688 scopus 로고    scopus 로고
    • Challenges in lin-log modelling of glycolysis in Lactococcus lactis
    • del Rosario,R. et al. (2008) Challenges in lin-log modelling of glycolysis in Lactococcus lactis. IET Syst. Biol., 2, 136-149.
    • (2008) IET Syst. Biol. , vol.2 , pp. 136-149
    • del Rosario, R.1
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster,A. et al. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B, 39, 1-38.
    • (1977) J. Roy. Stat. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.1
  • 9
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • Graham,J. (2009) Missing data analysis: Making it work in the real world. Annu. Rev. Psychol., 60, 549-576.
    • (2009) Annu. Rev. Psychol. , vol.60 , pp. 549-576
    • Graham, J.1
  • 10
    • 60849105949 scopus 로고    scopus 로고
    • Translating biochemical network models between different kinetic formats
    • Hadlich,F. et al. (2009) Translating biochemical network models between different kinetic formats. Metab. Eng., 11, 87-100.
    • (2009) Metab. Eng. , vol.11 , pp. 87-100
    • Hadlich, F.1
  • 11
    • 35748932045 scopus 로고    scopus 로고
    • Topology of the global regulatory network of carbon limitation in Escherichia coli
    • Hardiman,T. et al. (2007) Topology of the global regulatory network of carbon limitation in Escherichia coli. J. Biotechnol., 132, 359-374.
    • (2007) J. Biotechnol. , vol.132 , pp. 359-374
    • Hardiman, T.1
  • 12
    • 1842405351 scopus 로고    scopus 로고
    • Effects of spatiotemporal variations on metabolic control: Approximate analysis using (log)linear kinetic models
    • Hatzimanikatis,V. and Bailey,J. (1997) Effects of spatiotemporal variations on metabolic control: Approximate analysis using (log)linear kinetic models. iotechnol. Bioeng., 54, 91-104.
    • (1997) Biotechnol. Bioeng. , vol.54 , pp. 91-104
    • Hatzimanikatis, V.1    Bailey, J.2
  • 13
    • 25144492110 scopus 로고    scopus 로고
    • Approximative kinetic formats used in metabolic network modeling
    • Heijnen,J. (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol. Bioeng., 91, 534-545.
    • (2005) Biotechnol. Bioeng. , vol.91 , pp. 534-545
    • Heijnen, J.1
  • 15
    • 33846873244 scopus 로고    scopus 로고
    • Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models
    • Horton,N. and Kleinman,K. (2007) Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models. Am. tat., 61, 79-90.
    • (2007) Am. Stat. , vol.61 , pp. 79-90
    • Horton, N.1    Kleinman, K.2
  • 16
    • 34247612307 scopus 로고    scopus 로고
    • Multiple high-throughput analyses monitor the response of E. coli to perturbations
    • Ishii,N. et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science, 316, 593-597.
    • (2007) Science , vol.316 , pp. 593-597
    • Ishii, N.1
  • 18
    • 77949385752 scopus 로고    scopus 로고
    • Bacterial adaptation through distributed sensing of metabolic fluxes
    • Kotte,O. et al (2010) Bacterial adaptation through distributed sensing of metabolic fluxes. Mol. Syst. Biol., 6, 355.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 355
    • Kotte, O.1
  • 19
    • 33846617808 scopus 로고    scopus 로고
    • Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints
    • Liebermeister,W. and Klipp,E. (2006) Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints. Theor. Biol. Med. Model., 3, 1.
    • (2006) Theor. Biol. Med. Model. , vol.3 , pp. 41
    • Liebermeister, W.1    Klipp, E.2
  • 22
    • 79953794148 scopus 로고    scopus 로고
    • Derivation, identification and validation of a computational model of a novel synthetic regulatory network in yeast
    • Marucci,L. et al. (2011) Derivation, identification and validation of a computational model of a novel synthetic regulatory network in yeast. J. Math. Biol., 62, 85-706.
    • (2011) J. Math. Biol. , vol.62 , pp. 685-706
    • Marucci, L.1
  • 23
    • 33846849309 scopus 로고    scopus 로고
    • A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics
    • Nikerel,I. et al. (2006) A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics. BMC ioinformatics, 7, 540.
    • (2006) BMC Bioinformatics , vol.7 , pp. 540
    • Nikerel, I.1
  • 24
    • 55549091692 scopus 로고    scopus 로고
    • Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics
    • Nikerel,I. et al. (2009) Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with inlog kinetics. Metab. Eng., 11, 20-30.
    • (2009) Metab. Eng. , vol.11 , pp. 20-30
    • Nikerel, I.1
  • 25
    • 0242643743 scopus 로고    scopus 로고
    • A Bayesian missing value estimation method for gene expression profile data
    • Oba,S. et al. (2003) A Bayesian missing value estimation method for gene expression profile data. Bioinformatics, 19, 2088-2096.
    • (2003) Bioinformatics , vol.19 , pp. 2088-2096
    • Oba, S.1
  • 26
    • 67650760503 scopus 로고    scopus 로고
    • Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    • Raue,A. et al. (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25, 923-1929.
    • (2009) Bioinformatics , vol.25 , pp. 1923-1929
    • Raue, A.1
  • 27
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin,D. (1976) Inference and missing data. Biometrika, 63, 581-590.
    • (1976) Biometrika , vol.63 , pp. 581-590
    • Rubin, D.1
  • 28
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • Rubin,D. (1996) Multiple imputation after 18+ years. J. Am. Stat. A., 81, 473-489.
    • (1996) J. Am. Stat. A. , vol.81 , pp. 473-489
    • Rubin, D.1
  • 30
    • 27544483496 scopus 로고    scopus 로고
    • Non-linear PCA: Amissing data approach
    • Scholz,M. et al. (2005) Non-linear PCA: Amissing data approach. Bioinformatics, 21, 3887-3895.
    • (2005) Bioinformatics , vol.21 , pp. 3887-3895
    • Scholz, M.1
  • 31
    • 77649176477 scopus 로고    scopus 로고
    • Towards a genome-scale kinetic model of cellular metabolism
    • Smallbone,K. et al. (2010) Towards a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol., 4, 6.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 6
    • Smallbone, K.1
  • 33
    • 0141684666 scopus 로고    scopus 로고
    • Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics
    • Visser,D. and Heijnen,J. (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab. Eng., 5, 164-176.
    • (2003) Metab. Eng. , vol.5 , pp. 164-176
    • Visser, D.1    Heijnen, J.2
  • 34
    • 6044260198 scopus 로고    scopus 로고
    • Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics
    • Visser,D. et al. (2004) Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metab. Eng., 6, 378-90.
    • (2004) Metab. Eng. , vol.6 , pp. 378-390
    • Visser, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.