-
2
-
-
0000246714
-
Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity
-
[Bourgain and Wang 1997] (1998). Dedicated to Ennio De Giorgi. MR 99m:35219 Zbl 1043.35137
-
[Bourgain and Wang 1997] J. Bourgain and W. Wang, “Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25:1-2 (1997), 197–215 (1998). Dedicated to Ennio De Giorgi. MR 99m:35219 Zbl 1043.35137
-
(1997)
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
, vol.25
, Issue.1-2
, pp. 197-215
-
-
Bourgain, J.1
Wang, W.2
-
3
-
-
5444256656
-
Semilinear Schrödinger equations
-
[Cazenave 2003] New York Uni versity Courant Institute of Mathematical Sciences, New York, MR 2004j:35266 Zbl 1055.35003
-
[Cazenave 2003] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, New York Uni- versity Courant Institute of Mathematical Sciences, New York, 2003. MR 2004j:35266 Zbl 1055.35003
-
(2003)
Courant Lecture Notes in Mathematics
, vol.10
-
-
Cazenave, T.1
-
4
-
-
12744268005
-
Some remarks on the nonlinear Schrödinger equation in the subcritical case
-
[Cazenave and Weissler 1989] in (Bielefeld, 1987), Lecture Notes in Phys. Springer, Berlin, MR 91c:35136 Zbl 0699.35217
-
[Cazenave and Weissler 1989] T. Cazenave and F. B. Weissler, “Some remarks on the nonlinear Schrödinger equation in the subcritical case”, pp. 59–69 in New methods and results in nonlinear field equations (Bielefeld, 1987), Lecture Notes in Phys. 347, Springer, Berlin, 1989. MR 91c:35136 Zbl 0699.35217
-
(1989)
New methods and results in nonlinear field equations
, vol.347
, pp. 59-69
-
-
Cazenave, T.1
Weissler, F. B.2
-
5
-
-
33746745308
-
Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation
-
[Fibich et al. 2006] MR 2007d:35254 Zbl 1100.35097
-
[Fibich et al. 2006] G. Fibich, F. Merle, and P. Raphaël, “Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation”, Phys. D 220:1 (2006), 1–13. MR 2007d:35254 Zbl 1100.35097
-
(2006)
Phys. D
, vol.220
, Issue.1
, pp. 1-13
-
-
Fibich, G.1
Merle, F.2
Raphaël, P.3
-
6
-
-
0042413701
-
Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in H˙ s(B Rn)
-
[Furioli and Terraneo 2003a] MR 2004m:35246 Zbl 1050.35102
-
[Furioli and Terraneo 2003a] G. Furioli and E. Terraneo, “Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in H˙ s(B Rn)”, Commun. Contemp. Math. 5:3 (2003), 349–367. MR 2004m:35246 Zbl 1050.35102
-
(2003)
Commun. Contemp. Math
, vol.5
, Issue.3
, pp. 349-367
-
-
Furioli, G.1
Terraneo, E.2
-
7
-
-
0042413701
-
Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in H˙ s(B Rn)
-
[Furioli and Terraneo 2003b] MR 2004m:35246 Zbl 1050.35102
-
[Furioli and Terraneo 2003b] G. Furioli and E. Terraneo, “Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in H˙ s(B Rn)”, Commun. Contemp. Math. 5:3 (2003), 349–367. MR 2004m:35246 Zbl 1050.35102
-
(2003)
Commun. Contemp. Math
, vol.5
, Issue.3
, pp. 349-367
-
-
Furioli, G.1
Terraneo, E.2
-
8
-
-
36749114276
-
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations
-
[Glassey 1977] MR 57 #842 Zbl 0372.35009
-
[Glassey 1977] R. T. Glassey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, J. Math. Phys. 18:9 (1977), 1794–1797. MR 57 #842 Zbl 0372.35009
-
(1977)
J. Math. Phys
, vol.18
, Issue.9
, pp. 1794-1797
-
-
Glassey, R. T.1
-
9
-
-
51649139542
-
On nonlinear Schrödinger equations. II. Hs -solutions and unconditional well-posedness
-
[Kato 1995] MR 98a:35124a Zbl 0848.35124
-
[Kato 1995] T. Kato, “On nonlinear Schrödinger equations. II. Hs -solutions and unconditional well-posedness”, J. Anal. Math. 67 (1995), 281–306. MR 98a:35124a Zbl 0848.35124
-
(1995)
J. Anal. Math
, vol.67
, pp. 281-306
-
-
Kato, T.1
-
10
-
-
85035281160
-
Correction to: ‘On nonlinear Schrödinger equations. II. Hs-solutions and unconditional well-posedness
-
[Kato 1996] MR 98a:35124b Zbl 0861.53043
-
[Kato 1996] T. Kato, “Correction to: ‘On nonlinear Schrödinger equations. II. Hs-solutions and unconditional well-posedness’ ”, J. Anal. Math. 68 (1996), 305. MR 98a:35124b Zbl 0861.53043
-
(1996)
J. Anal. Math
, vol.68
, pp. 305
-
-
Kato, T.1
-
11
-
-
0001138601
-
Endpoint Strichartz estimates
-
[Keel and Tao 1998] MR 2000d:35018 Zbl 0922.35028
-
[Keel and Tao 1998] M. Keel and T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120:5 (1998), 955–980. MR 2000d:35018 Zbl 0922.35028
-
(1998)
Amer. J. Math
, vol.120
, Issue.5
, pp. 955-980
-
-
Keel, M.1
Tao, T.2
-
12
-
-
33645945606
-
On the blow up phenomenon of the critical nonlinear Schrödinger equation
-
[Keraani 2006] MR 2007e:35260 Zbl 1099.35132
-
[Keraani 2006] S. Keraani, “On the blow up phenomenon of the critical nonlinear Schrödinger equation”, J. Funct. Anal. 235:1 (2006), 171–192. MR 2007e:35260 Zbl 1099.35132
-
(2006)
J. Funct. Anal
, vol.235
, Issue.1
, pp. 171-192
-
-
Keraani, S.1
-
13
-
-
57749106360
-
-
[Killip et al. 2007] preprint, arXiv:0708.0849
-
[Killip et al. 2007] R. Killip, M. Visan, and X. Zhang, “The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher”, preprint, 2007, Available at arXiv:0708.0849.
-
(2007)
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher
-
-
Killip, R.1
Visan, M.2
Zhang, X.3
-
14
-
-
59849094540
-
-
[Killip et al. 2008a] preprint, arXiv:0804.1124
-
[Killip et al. 2008a] R. Killip, D. Li, M. Visan, and X. Zhang, “The characterization of minimal-mass blowup solutions to the focusing mass-critical NLS”, preprint, 2008, Available at arXiv:0804.1124.
-
(2008)
The characterization of minimal-mass blowup solutions to the focusing mass-critical NLS
-
-
Killip, R.1
Li, D.2
Visan, M.3
Zhang, X.4
-
15
-
-
59449092399
-
-
[Killip et al. 2008b] preprint, arXiv:0707.3188
-
[Killip et al. 2008b] R. Killip, T. Tao, and M. Visan, “The cubic nonlinear Schrödinger equation in two dimensions with radial data”, preprint, 2008, Available at arXiv:0707.3188.
-
(2008)
The cubic nonlinear Schrödinger equation in two dimensions with radial data
-
-
Killip, R.1
Tao, T.2
Visan, M.3
-
16
-
-
84990553632
-
On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlin- ear Schrödinger equation with critical exponent and critical mass
-
[Merle 1992] MR 93e:35104 Zbl 0767.35084
-
[Merle 1992] F. Merle, “On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlin- ear Schrödinger equation with critical exponent and critical mass”, Comm. Pure Appl. Math. 45:2 (1992), 203–254. MR 93e:35104 Zbl 0767.35084
-
(1992)
Comm. Pure Appl. Math
, vol.45
, Issue.2
, pp. 203-254
-
-
Merle, F.1
-
17
-
-
12444281836
-
Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation
-
[Merle and Raphaël 2005] MR 2006m:35346 Zbl 1062.35137
-
[Merle and Raphaël 2005] F. Merle and P. Raphaël, “Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation”, Comm. Math. Phys. 253:3 (2005), 675–704. MR 2006m:35346 Zbl 1062.35137
-
(2005)
Comm. Math. Phys
, vol.253
, Issue.3
, pp. 675-704
-
-
Merle, F.1
Raphaël, P.2
-
18
-
-
50049127248
-
Blow up of the critical norm for some radial L2 super critical nonlinear Schrödinger equations
-
[Merle and Raphaël 2008] MR MR2427005
-
[Merle and Raphaël 2008] F. Merle and P. Raphaël, “Blow up of the critical norm for some radial L2 super critical nonlinear Schrödinger equations”, Amer. J. Math. 130:4 (2008), 945–978. MR MR2427005
-
(2008)
Amer. J. Math
, vol.130
, Issue.4
, pp. 945-978
-
-
Merle, F.1
Raphaël, P.2
-
19
-
-
1842709141
-
Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D
-
[Merle and Vega 1998] MR 99d:35156 Zbl 0913.35126
-
[Merle and Vega 1998] F. Merle and L. Vega, “Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D”, Internat. Math. Res. Notices 8 (1998), 399–425. MR 99d:35156 Zbl 0913.35126
-
(1998)
Internat. Math. Res. Notices
, vol.8
, pp. 399-425
-
-
Merle, F.1
Vega, L.2
-
22
-
-
0001768220
-
An inviscid flow with compact support in space-time
-
[Scheffer 1993] MR 94h:35215 Zbl 0836.76017
-
[Scheffer 1993] V. Scheffer, “An inviscid flow with compact support in space-time”, J. Geom. Anal. 3:4 (1993), 343–401. MR 94h:35215 Zbl 0836.76017
-
(1993)
J. Geom. Anal
, vol.3
, Issue.4
, pp. 343-401
-
-
Scheffer, V.1
-
23
-
-
72849123518
-
Sharp linear and bilinear restriction estimates for the paraboloid in the cylindrically symmetric case
-
[Shao 2009] to appear in
-
[Shao 2009] S. Shao, “Sharp linear and bilinear restriction estimates for the paraboloid in the cylindrically symmetric case”, to appear in Rev. Mat. Iberoamericana.
-
Rev. Mat. Iberoamericana
-
-
Shao, S.1
-
24
-
-
84972553620
-
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations
-
[Strichartz 1977] MR 58 #23577 Zbl 0372.35001
-
[Strichartz 1977] R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J. 44:3 (1977), 705–714. MR 58 #23577 Zbl 0372.35001
-
(1977)
Duke Math. J
, vol.44
, Issue.3
, pp. 705-714
-
-
Strichartz, R. S.1
-
25
-
-
15944416090
-
On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation
-
[Tao 2004] MR 2005j:35210 Zbl 1125.11341
-
[Tao 2004] T. Tao, “On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation”, Dyn. Partial Differ. Equ. 1:1 (2004), 1–48. MR 2005j:35210 Zbl 1125.11341
-
(2004)
Dyn. Partial Differ. Equ
, vol.1
, Issue.1
, pp. 1-48
-
-
Tao, T.1
-
27
-
-
85125868977
-
-
[Tao et al. 2006] preprint, arXiv:math.AP/0609692
-
[Tao et al. 2006] T. Tao, M. Visan, and X. Zhang, “Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation”, preprint, 2006, Available at arXiv:math.AP/0609692.
-
(2006)
Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation
-
-
Tao, T.1
Visan, M.2
Zhang, X.3
-
28
-
-
55549086472
-
Minimal-mass blowup solutions of the mass-critical NLS
-
[Tao et al. 2008] MR MR2445122
-
[Tao et al. 2008] T. Tao, M. Visan, and X. Zhang, “Minimal-mass blowup solutions of the mass-critical NLS”, Forum Math. 20:5 (2008), 881–919. MR MR2445122
-
(2008)
Forum Math
, vol.20
, Issue.5
, pp. 881-919
-
-
Tao, T.1
Visan, M.2
Zhang, X.3
|