-
1
-
-
0033074557
-
High frequency approximation of solutions to critical nonlinear wave equations
-
Bahouri H., and Gérard P. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math. 121 (1999) 131-175
-
(1999)
Amer. J. Math.
, vol.121
, pp. 131-175
-
-
Bahouri, H.1
Gérard, P.2
-
2
-
-
0000193318
-
Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity
-
Bourgain J. Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity. Int. Math. Res. Not. 8 (1998) 253-283
-
(1998)
Int. Math. Res. Not.
, vol.8
, pp. 253-283
-
-
Bourgain, J.1
-
3
-
-
33645938991
-
-
2-critical case, Trans. Amer. Math. Soc., in press
-
-
-
-
4
-
-
10244238584
-
An Introduction to Nonlinear Schrödinger Equations
-
Univ. Fed. Rio de Janeiro
-
Cazenave T. An Introduction to Nonlinear Schrödinger Equations. Text. Metod. Mat. vol. 26 (1993), Univ. Fed. Rio de Janeiro
-
(1993)
Text. Metod. Mat.
, vol.26
-
-
Cazenave, T.1
-
5
-
-
0042904653
-
Profile decomposition for the Navier-Stokes equations
-
Gallagher I. Profile decomposition for the Navier-Stokes equations. Bull. Soc. Math. France 129 2 (2001) 285-316
-
(2001)
Bull. Soc. Math. France
, vol.129
, Issue.2
, pp. 285-316
-
-
Gallagher, I.1
-
6
-
-
0035217268
-
Profile decomposition for the wave equation outside a convex obstacle
-
Gallagher I., and Gérard P. Profile decomposition for the wave equation outside a convex obstacle. J. Math. Pures Appl. (9) 80 1 (2001) 1-49
-
(2001)
J. Math. Pures Appl. (9)
, vol.80
, Issue.1
, pp. 1-49
-
-
Gallagher, I.1
Gérard, P.2
-
7
-
-
0000555922
-
Scattering theory in the energy space for a class of nonlinear Schrödinger equations
-
Ginibre J., and Velo G. Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. (9) 64 (1984) 363-401
-
(1984)
J. Math. Pures Appl. (9)
, vol.64
, pp. 363-401
-
-
Ginibre, J.1
Velo, G.2
-
8
-
-
0035922239
-
On the defect of compactness for the Strichartz estimates of the Schrödinger equations
-
Keraani S. On the defect of compactness for the Strichartz estimates of the Schrödinger equations. J. Differential Equations 175 2 (2001) 353-392
-
(2001)
J. Differential Equations
, vol.175
, Issue.2
, pp. 353-392
-
-
Keraani, S.1
-
9
-
-
0001337201
-
Construction of solutions with exactly k blow up points for nonlinear Schrödinger equations with critical nonlinearity
-
Merle F. Construction of solutions with exactly k blow up points for nonlinear Schrödinger equations with critical nonlinearity. Comm. Math. Phys. 129 2 (1990) 223-240
-
(1990)
Comm. Math. Phys.
, vol.129
, Issue.2
, pp. 223-240
-
-
Merle, F.1
-
10
-
-
84974001368
-
Determination of blow up solutions with minimal mass for nonlinear Schrödinger equations with critical power
-
Merle F. Determination of blow up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69 2 (1993) 427-454
-
(1993)
Duke Math. J.
, vol.69
, Issue.2
, pp. 427-454
-
-
Merle, F.1
-
11
-
-
2942586742
-
2 critical nonlinear Schrödinger equation
-
2 critical nonlinear Schrödinger equation. Invent. Math. 156 3 (2004) 565-672
-
(2004)
Invent. Math.
, vol.156
, Issue.3
, pp. 565-672
-
-
Merle, F.1
Raphael, R.P.2
-
12
-
-
0000704928
-
2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity
-
2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity. J. Differential Equations 84 2 (1990) 205-214
-
(1990)
J. Differential Equations
, vol.84
, Issue.2
, pp. 205-214
-
-
Merle, F.1
Tsutsumi, Y.2
-
13
-
-
1842709141
-
2 solutions of the critical nonlinear Schrödinger equations in 2D
-
2 solutions of the critical nonlinear Schrödinger equations in 2D. Int. Math. Res. Not. 8 (1998) 399-425
-
(1998)
Int. Math. Res. Not.
, vol.8
, pp. 399-425
-
-
Merle, F.1
Vega, L.2
-
15
-
-
0033484486
-
Asymptotic and limiting profiles of blow up solutions of the nonlinear Schrödinger equation with critical power
-
Nawa H. Asymptotic and limiting profiles of blow up solutions of the nonlinear Schrödinger equation with critical power. Comm. Pure Appl. Math. 52 2 (1999) 193-270
-
(1999)
Comm. Pure Appl. Math.
, vol.52
, Issue.2
, pp. 193-270
-
-
Nawa, H.1
-
16
-
-
0003230098
-
The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse
-
Springer-Verlag, New York
-
Sulem C. The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Appl. Math. Sci. vol. 139 (1999), Springer-Verlag, New York
-
(1999)
Appl. Math. Sci.
, vol.139
-
-
Sulem, C.1
-
17
-
-
84972553620
-
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equation
-
Strichartz R. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equation. Duke Math. J. 44 (1977) 705-714
-
(1977)
Duke Math. J.
, vol.44
, pp. 705-714
-
-
Strichartz, R.1
-
18
-
-
84968496791
-
A restriction theorem for the Fourier transform
-
Tomas P. A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 81 (1975) 477-478
-
(1975)
Bull. Amer. Math. Soc.
, vol.81
, pp. 477-478
-
-
Tomas, P.1
-
19
-
-
0040580243
-
2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power
-
2 concentration of blow up solutions for the nonlinear Schrödinger equation with critical power. Nonlinear Anal. 15 8 (1990) 719-724
-
(1990)
Nonlinear Anal.
, vol.15
, Issue.8
, pp. 719-724
-
-
Tsutsumi, Y.1
-
20
-
-
0041473959
-
Nonlinear Schrödinger equations and sharp interpolation estimates
-
Weinstein M.I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983) 567-576
-
(1983)
Comm. Math. Phys.
, vol.87
, pp. 567-576
-
-
Weinstein, M.I.1
-
21
-
-
0001295566
-
On the structure of singularities in solutions to the nonlinear dispersive evolution equations
-
Weinstein M.I. On the structure of singularities in solutions to the nonlinear dispersive evolution equations. Comm. Partial Differential Equations 11 (1984) 545-565
-
(1984)
Comm. Partial Differential Equations
, vol.11
, pp. 545-565
-
-
Weinstein, M.I.1
|