-
1
-
-
0026659735
-
Induction of germ cell formation by oskar
-
Ephrussi A, Lehmann R, (1992) Induction of germ cell formation by oskar. Nature 358: 387-392.
-
(1992)
Nature
, vol.358
, pp. 387-392
-
-
Ephrussi, A.1
Lehmann, R.2
-
2
-
-
0023046257
-
Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila
-
Lehmann R, Nusslein-Volhard C, (1986) Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47: 141-152.
-
(1986)
Cell
, vol.47
, pp. 141-152
-
-
Lehmann, R.1
Nusslein-Volhard, C.2
-
3
-
-
18344371641
-
Moving messages: the intracellular localization of mRNAs
-
St Johnston D, (2005) Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol 6: 363-375.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 363-375
-
-
St Johnston, D.1
-
4
-
-
33646117253
-
Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte
-
Lin MD, Fan SJ, Hsu WS, Chou TB, (2006) Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell 10: 601-613.
-
(2006)
Dev Cell
, vol.10
, pp. 601-613
-
-
Lin, M.D.1
Fan, S.J.2
Hsu, W.S.3
Chou, T.B.4
-
5
-
-
0034800019
-
Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis
-
Nakamura A, Amikura R, Hanyu K, Kobayashi S, (2001) Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128: 3233-3242.
-
(2001)
Development
, vol.128
, pp. 3233-3242
-
-
Nakamura, A.1
Amikura, R.2
Hanyu, K.3
Kobayashi, S.4
-
6
-
-
34347335707
-
P-body formation is a consequence, not the cause, of RNA-mediated gene silencing
-
Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E, (2007) P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol 27: 3970-3981.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3970-3981
-
-
Eulalio, A.1
Behm-Ansmant, I.2
Schweizer, D.3
Izaurralde, E.4
-
7
-
-
33847417585
-
P bodies and the control of mRNA translation and degradation
-
Parker R, Sheth U, (2007) P bodies and the control of mRNA translation and degradation. Mol Cell 25: 635-646.
-
(2007)
Mol Cell
, vol.25
, pp. 635-646
-
-
Parker, R.1
Sheth, U.2
-
9
-
-
27144515901
-
Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies
-
Brengues M, Teixeira D, Parker R, (2005) Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310: 486-489.
-
(2005)
Science
, vol.310
, pp. 486-489
-
-
Brengues, M.1
Teixeira, D.2
Parker, R.3
-
10
-
-
34250677751
-
Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells
-
Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W, (2006) Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol 71: 513-521.
-
(2006)
Cold Spring Harb Symp Quant Biol
, vol.71
, pp. 513-521
-
-
Bhattacharyya, S.N.1
Habermacher, R.2
Martine, U.3
Closs, E.I.4
Filipowicz, W.5
-
11
-
-
35948951960
-
Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae
-
Decker CJ, Teixeira D, Parker R, (2007) Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179: 437-449.
-
(2007)
J Cell Biol
, vol.179
, pp. 437-449
-
-
Decker, C.J.1
Teixeira, D.2
Parker, R.3
-
12
-
-
50249131374
-
A role for Q/N-rich aggregation-prone regions in P-body localization
-
Reijns MA, Alexander RD, Spiller MP, Beggs JD, (2008) A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci 121: 2463-2472.
-
(2008)
J Cell Sci
, vol.121
, pp. 2463-2472
-
-
Reijns, M.A.1
Alexander, R.D.2
Spiller, M.P.3
Beggs, J.D.4
-
13
-
-
56849103665
-
The control of mRNA decapping and P-body formation
-
Franks TM, Lykke-Andersen J, (2008) The control of mRNA decapping and P-body formation. Mol Cell 32: 605-615.
-
(2008)
Mol Cell
, vol.32
, pp. 605-615
-
-
Franks, T.M.1
Lykke-Andersen, J.2
-
14
-
-
37549051318
-
A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting
-
Tritschler F, Eulalio A, Truffault V, Hartmann MD, Helms S, et al. (2007) A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting. Mol Cell Biol 27: 8600-8611.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 8600-8611
-
-
Tritschler, F.1
Eulalio, A.2
Truffault, V.3
Hartmann, M.D.4
Helms, S.5
-
15
-
-
29144481702
-
Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
-
Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J, (2005) Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20: 905-915.
-
(2005)
Mol Cell
, vol.20
, pp. 905-915
-
-
Fenger-Gron, M.1
Fillman, C.2
Norrild, B.3
Lykke-Andersen, J.4
-
16
-
-
33947540895
-
Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development
-
Xu J, Yang JY, Niu QW, Chua NH, (2006) Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18: 3386-3398.
-
(2006)
Plant Cell
, vol.18
, pp. 3386-3398
-
-
Xu, J.1
Yang, J.Y.2
Niu, Q.W.3
Chua, N.H.4
-
17
-
-
28344456221
-
Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body
-
Yu JH, Yang WH, Gulick T, Bloch KD, Bloch DB, (2005) Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11: 1795-1802.
-
(2005)
RNA
, vol.11
, pp. 1795-1802
-
-
Yu, J.H.1
Yang, W.H.2
Gulick, T.3
Bloch, K.D.4
Bloch, D.B.5
-
18
-
-
52949146385
-
The C-terminal region of Ge-1 presents conserved structural features required for P-body localization
-
Jinek M, Eulalio A, Lingel A, Helms S, Conti E, et al. (2008) The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA 14: 1991-1998.
-
(2008)
RNA
, vol.14
, pp. 1991-1998
-
-
Jinek, M.1
Eulalio, A.2
Lingel, A.3
Helms, S.4
Conti, E.5
-
19
-
-
35348962568
-
Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing
-
Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang SF, et al. (2007) Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21: 2558-2570.
-
(2007)
Genes Dev
, vol.21
, pp. 2558-2570
-
-
Eulalio, A.1
Rehwinkel, J.2
Stricker, M.3
Huntzinger, E.4
Yang, S.F.5
-
20
-
-
0030300085
-
The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster
-
Chou TB, Perrimon N, (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144: 1673-1679.
-
(1996)
Genetics
, vol.144
, pp. 1673-1679
-
-
Chou, T.B.1
Perrimon, N.2
-
21
-
-
12244268655
-
The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis
-
Farkas RM, Giansanti MG, Gatti M, Fuller MT, (2003) The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol Biol Cell 14: 190-200.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 190-200
-
-
Farkas, R.M.1
Giansanti, M.G.2
Gatti, M.3
Fuller, M.T.4
-
22
-
-
24944448262
-
A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay
-
Ferraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, et al. (2005) A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol 170: 913-924.
-
(2005)
J Cell Biol
, vol.170
, pp. 913-924
-
-
Ferraiuolo, M.A.1
Basak, S.2
Dostie, J.3
Murray, E.L.4
Schoenberg, D.R.5
-
23
-
-
0346503888
-
Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis
-
Nakamura A, Sato K, Hanyu-Nakamura K, (2004) Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 6: 69-78.
-
(2004)
Dev Cell
, vol.6
, pp. 69-78
-
-
Nakamura, A.1
Sato, K.2
Hanyu-Nakamura, K.3
-
24
-
-
0029058415
-
Cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila
-
Roth S, Neuman-Silberberg FS, Barcelo G, Schupbach T, (1995) cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81: 967-978.
-
(1995)
Cell
, vol.81
, pp. 967-978
-
-
Roth, S.1
Neuman-Silberberg, F.S.2
Barcelo, G.3
Schupbach, T.4
-
25
-
-
0024786410
-
Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte
-
St Johnston D, Driever W, Berleth T, Richstein S, Nusslein-Volhard C, (1989) Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107 (Suppl): 13-19.
-
(1989)
Development
, vol.107
, Issue.SUPPL.
, pp. 13-19
-
-
St Johnston, D.1
Driever, W.2
Berleth, T.3
Richstein, S.4
Nusslein-Volhard, C.5
-
26
-
-
0025814789
-
Oskar mRNA is localized to the posterior pole of the Drosophila oocyte
-
Kim-Ha J, Smith JL, Macdonald PM, (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66: 23-35.
-
(1991)
Cell
, vol.66
, pp. 23-35
-
-
Kim-Ha, J.1
Smith, J.L.2
Macdonald, P.M.3
-
27
-
-
0025826161
-
Oskar organizes the germ plasm and directs localization of the posterior determinant nanos
-
Ephrussi A, Dickinson LK, Lehmann R, (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66: 37-50.
-
(1991)
Cell
, vol.66
, pp. 37-50
-
-
Ephrussi, A.1
Dickinson, L.K.2
Lehmann, R.3
-
28
-
-
0034703428
-
A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein
-
Brendza RP, Serbus LR, Duffy JB, Saxton WM, (2000) A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289: 2120-2122.
-
(2000)
Science
, vol.289
, pp. 2120-2122
-
-
Brendza, R.P.1
Serbus, L.R.2
Duffy, J.B.3
Saxton, W.M.4
-
29
-
-
0035817634
-
Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole
-
van Eeden FJ, Palacios IM, Petronczki M, Weston MJ, St Johnston D, (2001) Barentsz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole. J Cell Biol 154: 511-523.
-
(2001)
J Cell Biol
, vol.154
, pp. 511-523
-
-
van Eeden, F.J.1
Palacios, I.M.2
Petronczki, M.3
Weston, M.J.4
St Johnston, D.5
-
30
-
-
0025885105
-
Staufen, a gene required to localize maternal RNAs in the Drosophila egg
-
St Johnston D, Beuchle D, Nusslein-Volhard C, (1991) Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66: 51-63.
-
(1991)
Cell
, vol.66
, pp. 51-63
-
-
St Johnston, D.1
Beuchle, D.2
Nusslein-Volhard, C.3
-
31
-
-
61849099352
-
Dynamic organization and plasticity of sponge bodies
-
Snee MJ, Macdonald PM, (2009) Dynamic organization and plasticity of sponge bodies. Dev Dyn 238: 918-930.
-
(2009)
Dev Dyn
, vol.238
, pp. 918-930
-
-
Snee, M.J.1
Macdonald, P.M.2
-
32
-
-
0031965218
-
DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila
-
Hacker U, Perrimon N, (1998) DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev 12: 274-284.
-
(1998)
Genes Dev
, vol.12
, pp. 274-284
-
-
Hacker, U.1
Perrimon, N.2
-
33
-
-
50249124582
-
In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization
-
Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, et al. (2008) In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134: 843-853.
-
(2008)
Cell
, vol.134
, pp. 843-853
-
-
Zimyanin, V.L.1
Belaya, K.2
Pecreaux, J.3
Gilchrist, M.J.4
Clark, A.5
-
34
-
-
0027279320
-
Type I repressors of P element mobility
-
Gloor GB, Preston CR, Johnson-Schlitz DM, Nassif NA, Phillis RW, et al. (1993) Type I repressors of P element mobility. Genetics 135: 81-95.
-
(1993)
Genetics
, vol.135
, pp. 81-95
-
-
Gloor, G.B.1
Preston, C.R.2
Johnson-Schlitz, D.M.3
Nassif, N.A.4
Phillis, R.W.5
-
35
-
-
0028863317
-
Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly
-
Markussen FH, Michon AM, Breitwieser W, Ephrussi A, (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121: 3723-3732.
-
(1995)
Development
, vol.121
, pp. 3723-3732
-
-
Markussen, F.H.1
Michon, A.M.2
Breitwieser, W.3
Ephrussi, A.4
-
36
-
-
58849127937
-
Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation
-
Besse F, Lopez de Quinto S, Marchand V, Trucco A, Ephrussi A, (2009) Drosophila PTB promotes formation of high-order RNP particles and represses oskar translation. Genes Dev 23: 195-207.
-
(2009)
Genes Dev
, vol.23
, pp. 195-207
-
-
Besse, F.1
Lopez de Quinto, S.2
Marchand, V.3
Trucco, A.4
Ephrussi, A.5
-
37
-
-
0036677830
-
Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte
-
Vanzo NF, Ephrussi A, (2002) Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 129: 3705-3714.
-
(2002)
Development
, vol.129
, pp. 3705-3714
-
-
Vanzo, N.F.1
Ephrussi, A.2
-
38
-
-
67349097349
-
Myosin-V regulates oskar mRNA localization in the Drosophila oocyte
-
Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A, (2009) Myosin-V regulates oskar mRNA localization in the Drosophila oocyte. Curr Biol 19: 1058-1063.
-
(2009)
Curr Biol
, vol.19
, pp. 1058-1063
-
-
Krauss, J.1
Lopez de Quinto, S.2
Nusslein-Volhard, C.3
Ephrussi, A.4
-
39
-
-
0021464779
-
Kruppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation
-
Wieschaus E, Nusslein-Volhard C, Kluding H, (1984) Kruppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev Biol 104: 172-186.
-
(1984)
Dev Biol
, vol.104
, pp. 172-186
-
-
Wieschaus, E.1
Nusslein-Volhard, C.2
Kluding, H.3
|