메뉴 건너뛰기




Volumn 11, Issue 5, 2011, Pages 4622-4647

A new data mining scheme using artificial neural networks

Author keywords

Clustering; Constructive algorithm; Data mining; Neural networks; Pruning; Rule extraction; Symbolic rules; Weight freezing

Indexed keywords

ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; DATA MINING; METHODOLOGY;

EID: 79957755334     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s110504622     Document Type: Article
Times cited : (28)

References (55)
  • 3
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews, R.; Diederich, J.; Tickle, A.B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl. Based Syst. 1995, 8, 373-389.
    • (1995) Knowl. Based Syst. , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 4
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden-unit splitting
    • Setiono, R. Extracting rules from neural networks by pruning and hidden-unit splitting. Neural Comput. 1997, 9, 205-225.
    • (1997) Neural Comput , vol.9 , pp. 205-225
    • Setiono, R.1
  • 7
    • 78649887040 scopus 로고    scopus 로고
    • Research of data mining based on neural networks
    • Ni, X. Research of data mining based on neural networks. World Academy Sci. Eng. Tech. 2008, 39, 381-384.
    • (2008) World Academy Sci. Eng. Tech. , vol.39 , pp. 381-384
    • Ni, X.1
  • 8
    • 77955766841 scopus 로고    scopus 로고
    • Neural networks in data mining
    • Vesely, A. Neural networks in data mining. Agric. Econ. 2003, 49, 427-431.
    • (2003) Agric. Econ. , vol.49 , pp. 427-431
    • Vesely, A.1
  • 10
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • Baesens, B.; Setiono, R.; Mues, C.; Vanthienen, J. Using neural network rule extraction and decision tables for credit-risk evaluation. Manage. Sci. 2003, 49, 312-329.
    • (2003) Manage. Sci. , vol.49 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 11
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: A taxonomy and review
    • Jacobsson, H. Rule extraction from recurrent neural networks: A taxonomy and review. Neural Comput. 2005, 17, 1223-1263.
    • (2005) Neural Comput , vol.17 , pp. 1223-1263
    • Jacobsson, H.1
  • 12
    • 56349096960 scopus 로고    scopus 로고
    • Rule extraction from trained adaptive neural networks using artificial immune systems
    • Kahramanli, H.; Allahverdi, N. Rule extraction from trained adaptive neural networks using artificial immune systems. Expert Syst. Appl. 2009, 36, 1513-1522.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1513-1522
    • Kahramanli, H.1    Allahverdi, N.2
  • 13
    • 50849098868 scopus 로고    scopus 로고
    • A note on knowledge discovery using neural networks and its application to credit screening
    • Setiono, R.; Baesens, B.; Mues, C. A note on knowledge discovery using neural networks and its application to credit screening, Eur. J. Operation. Res. 2009, 192, 326-332.
    • (2009) Eur. J. Operation. Res. , vol.192 , pp. 326-332
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 14
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • Tickle, A.B.; Andrews, R.; Golea, M.; Diederich, J. The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Trans. Neural Netw. 1998, 9, 1057-1067.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , pp. 1057-1067
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 16
    • 0030109008 scopus 로고    scopus 로고
    • Symbolic representation of neural networks
    • Setiono, R.; Liu, H. Symbolic representation of neural networks. IEEE Comput. 1996, 29, 71-77.
    • (1996) IEEE Comput , vol.29 , pp. 71-77
    • Setiono, R.1    Liu, H.2
  • 17
    • 51049095878 scopus 로고    scopus 로고
    • Greedy rule generation from discrete data and its use in neural network rule extraction
    • Odajima, K.; Hayashi, Y.; Gong, T.; Setiono, R. Greedy rule generation from discrete data and its use in neural network rule extraction. Neural Netw. 2008, 21, 020-1028.
    • (2008) Neural Netw , vol.21 , pp. 020-1028
    • Odajima, K.1    Hayashi, Y.2    Gong, T.3    Setiono, R.4
  • 18
  • 19
  • 22
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • Towell, G.G.; Shavlik, J.W. Extracting refined rules from knowledge-based neural networks. Mach. Learn. 1993, 13, 71-101.
    • (1993) Mach. Learn. , vol.13 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 24
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Towell, G.G; Shavlik, J.W. Knowledge-based artificial neural networks. Artif. Intell. 1994, 70, 119-165.
    • (1994) Artif. Intell. , vol.70 , pp. 119-165
    • Towell, G.G.1    Shavlik, J.W.2
  • 26
    • 77956248935 scopus 로고    scopus 로고
    • A family of efficient rule generators
    • Marcel Dekker Inc.: New York, NY, USA
    • Liu, H. A family of efficient rule generators. In Encyclopedia of Computer Science and Technology; Marcel Dekker Inc.: New York, NY, USA, 1998; Volume 39, pp. 15-28.
    • (1998) In Encyclopedia of Computer Science and Technology , vol.39 , pp. 15-28
    • Liu, H.1
  • 27
    • 0033751611 scopus 로고    scopus 로고
    • Extracting M-of-N rules from trained neural networks
    • Setiono, R. Extracting M-of-N rules from trained neural networks. IEEE Trans. Neural Netw. 2000, 11, 512-519.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 512-519
    • Setiono, R.1
  • 28
    • 79957750094 scopus 로고    scopus 로고
    • An algorithm to extract rules from artificial neural networks for medical diagnosis problems
    • Kamruzzaman, S.M.; Islam, M.M. An algorithm to extract rules from artificial neural networks for medical diagnosis problems. Int. J. Inf. Tech. 2006, 12, 41-59.
    • (2006) Int. J. Inf. Tech. , vol.12 , pp. 41-59
    • Kamruzzaman, S.M.1    Islam, M.M.2
  • 29
    • 43449135303 scopus 로고    scopus 로고
    • Pareto-based multiobjective machine learning: An overview and case studies
    • Jin, Y.; Sendhoff, B. Pareto-based multiobjective machine learning: An overview and case studies. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2008, 38, 397-415.
    • (2008) IEEE Trans. Syst. Man Cybern. C Appl. Rev. , vol.38 , pp. 397-415
    • Jin, Y.1    Sendhoff, B.2
  • 31
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structured learning in feedforward neural networks for regression problems
    • Kwok, T.Y.; Yeung, D.Y. Constructive algorithms for structured learning in feedforward neural networks for regression problems. IEEE Trans. Neural Netw. 1997, 8, 630-645.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 32
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam, M.M.; Yao, X.; Murase, K. A constructive algorithm for training cooperative neural network ensembles. IEEE Trans. Neural Netw. 2003, 14, 820-834.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 33
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural network learning algorithms for pattern classification
    • Parekh, R.; Yang, J.; Honavar, V. Constructive neural network learning algorithms for pattern classification. IEEE Trans. Neural Netw. 2000, 11, 436-451.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , pp. 436-451
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 34
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • Ash, T. Dynamic node creation in backpropagation networks. Connect. Sci. 1989, 1, 365-375.
    • (1989) Connect. Sci. , vol.1 , pp. 365-375
    • Ash, T.1
  • 36
    • 0029185114 scopus 로고
    • Use of quasi-Newton method in a feedforward neural network construction algorithm
    • Setiono, R.; Hui, L.C.K. Use of quasi-Newton method in a feedforward neural network construction algorithm. IEEE Trans. Neural Netw. 1995, 6, 273-277.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 273-277
    • Setiono, R.1    Hui, L.C.K.2
  • 40
    • 0026711368 scopus 로고
    • Improving the convergence of backpropagation algorithm
    • Ooyen, A.; Nienhuis, B. Improving the convergence of backpropagation algorithm. Neural Netw. 1992, 5, 465-471.
    • (1992) Neural Netw , vol.5 , pp. 465-471
    • Ooyen, A.1    Nienhuis, B.2
  • 41
    • 0027662338 scopus 로고
    • Pruning algorithms-A survey
    • Reed, R. Pruning algorithms-A survey. IEEE Trans. Neural Netw. 1993, 4, 740-747.
    • (1993) IEEE Trans. Neural Netw. , vol.4 , pp. 740-747
    • Reed, R.1
  • 44
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Santiago de Chile, Chile, September
    • Raymond, T.N.; Han, J. Efficient and effective clustering methods for spatial data mining. In Proceedings of International Conference on Very Large Data Bases, Santiago de Chile, Chile, 12-15 September 1994; pp. 144-155.
    • (1994) In Proceedings of International Conference on Very Large Data Bases , vol.12-15 , pp. 144-155
    • Raymond, T.N.1    Han, J.2
  • 45
    • 0034811555 scopus 로고    scopus 로고
    • A new algorithm to design compact two hidden-layer artificial neural networks
    • Islam, M.M.; Murase, K. A new algorithm to design compact two hidden-layer artificial neural networks. Neural Netw. 2001, 4, 1265-1278.
    • (2001) Neural Netw , vol.4 , pp. 1265-1278
    • Islam, M.M.1    Murase, K.2
  • 49
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA, USA, Available online:, (accessed on 12 April
    • Murphy, P.M.; Aha, D.W. UCI Repository of Machine Learning Databases, (Machine-Readable Data Repository); Department of Information and Computer Science, University of California, Irvine, CA, USA, 1998. Available online: http://archive.ics.uci.edu/ml/ (accessed on 12 April 2011).
    • (1998) UCI Repository of Machine Learning Databases, (Machine-Readable Data Repository)
    • Murphy, P.M.1    Aha, D.W.2
  • 53
    • 0029219033 scopus 로고
    • RULES: A simple rule extraction system
    • Pham, D.T.; Aksoy, M.S. RULES: A simple rule extraction system. Expert Syst. Appl. 1995, 8, 59-65.
    • (1995) Expert Syst. Appl. , vol.8 , pp. 59-65
    • Pham, D.T.1    Aksoy, M.S.2
  • 54
    • 0027705813 scopus 로고
    • An algorithm for automatic rule induction
    • Pham, D.T.; Aksoy, M.S. An algorithm for automatic rule induction. Artif. Intell. Eng. 1994, 8, 277-282.
    • (1994) Artif. Intell. Eng. , vol.8 , pp. 277-282
    • Pham, D.T.1    Aksoy, M.S.2
  • 55
    • 0024103809 scopus 로고
    • PRISM: An algorithm for inducting modular rules
    • Cendrowska, J. PRISM: An algorithm for inducting modular rules. Int. J. Man Mach. Stud. 1987, 27, 349-370.
    • (1987) Int. J. Man Mach. Stud. , vol.27 , pp. 349-370
    • Cendrowska, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.