메뉴 건너뛰기




Volumn 77, Issue 1, 2011, Pages 60-68

AdaBoost classifiers for pecan defect classification

Author keywords

AdaBoost; Food safety machine vision inspection; Machine learning; Pattern recognition; Pecan; Support vector machine

Indexed keywords

ADABOOST; CLASSIFICATION ACCURACY; CLASSIFICATION TIME; COMPUTATIONAL TIME; DATA VARIABILITY; DEFECT CLASSIFICATION; LINEAR SVM; MACHINE LEARNING; MACHINE VISION INSPECTION; ORDERS OF MAGNITUDE; OTSU METHOD; PECAN; REAL-TIME APPLICATION; SEGMENTATION METHODS; WATER FLOWS; X-RAY IMAGE;

EID: 79957744656     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2011.03.008     Document Type: Article
Times cited : (74)

References (25)
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Machine Learning 1995, 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 3
    • 79957732689 scopus 로고
    • Food and Agriculture Organization (FAO), Non-Wood Forest Products. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at: Accessed 17 February, 2011.
    • Food and Agriculture Organization (FAO), 1995. Non-Wood Forest Products. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at: Accessed 17 February, 2011. http://www.fao.org/docrep/v8929e/v8929e00.htm.
    • (1995)
  • 4
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning
    • Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148-156.
    • (1996) , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 5
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Freund Y., Schapire R.E. Improved boosting algorithms using confidence-rated predictions. Machine Learning 1999, 37(3):297-336.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Freund, Y.1    Schapire, R.E.2
  • 7
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J., Hastie T., Tibshirani R. Additive logistic regression: A statistical view of boosting. The Annals of Statistics 2000, 28(2):337-374.
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 67349098005 scopus 로고    scopus 로고
    • Supervised projection approach for boosting classifiers
    • García-Pedrajas N. Supervised projection approach for boosting classifiers. Pattern Recognition 2009, 42(9):1742-1760.
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1742-1760
    • García-Pedrajas, N.1
  • 9
    • 79957744056 scopus 로고    scopus 로고
    • Digital Image Processing, third ed., Pearson Education Inc., Upper Saddle River, NJ.
    • Gonzalez, R.C., Woods, R.E., 2008.Digital Image Processing, third ed., Pearson Education Inc., Upper Saddle River, NJ.
    • (2008)
    • Gonzalez, R.C.1    Woods, R.E.2
  • 11
    • 55449125185 scopus 로고    scopus 로고
    • Support Vector Machines and Kernels for Computational Biology. PLoS Computational Biology. Available at: Accessed on Accessed on 30 April, 2010.
    • Hur, A.B., Ong, C.S., Sonnenburg, S., Scholkopf, B., Rätsch, G., 2008. Support Vector Machines and Kernels for Computational Biology. PLoS Computational Biology. Available at: Accessed on Accessed on 30 April, 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547983/pdf/pcbi.1000173.pdf.
    • (2008)
    • Hur, A.B.1    Ong, C.S.2    Sonnenburg, S.3    Scholkopf, B.4    Rätsch, G.5
  • 12
    • 32644445913 scopus 로고    scopus 로고
    • Application of support vector machine technology for weed and nitrogen stress detection in corn
    • Karimi Y., Prasher S.O., Patel R.M., Kim S.H. Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture 2006, 51(1-2):99-109.
    • (2006) Computers and Electronics in Agriculture , vol.51 , Issue.1-2 , pp. 99-109
    • Karimi, Y.1    Prasher, S.O.2    Patel, R.M.3    Kim, S.H.4
  • 14
    • 79957779381 scopus 로고    scopus 로고
    • Development of a new local adaptive thresholding method and classification algorithms for X-ray machine vision inspection of pecans. Ph. D dissertation, Department of Biosystems andAgricultural Engineering, Oklahoma State University, Stillwater, OK.
    • Mathanker, S.K., 2010. Development of a new local adaptive thresholding method and classification algorithms for X-ray machine vision inspection of pecans. Ph. D dissertation, Department of Biosystems andAgricultural Engineering, Oklahoma State University, Stillwater, OK.
    • (2010)
    • Mathanker, S.K.1
  • 16
    • 78649709558 scopus 로고    scopus 로고
    • b. AdaBoost and support vector machine classifiers for automatic weed control: Canola and Wheat. ASABE Meeting Paper No. 1008834. St. Joseph, Mich.: ASABE.
    • Mathanker, S.K., Weckler, P.R., Taylor, R.K., Fan, G., 2010b. AdaBoost and support vector machine classifiers for automatic weed control: Canola and Wheat. ASABE Meeting Paper No. 1008834. St. Joseph, Mich.: ASABE.
    • (2010)
    • Mathanker, S.K.1    Weckler, P.R.2    Taylor, R.K.3    Fan, G.4
  • 17
    • 79957782253 scopus 로고    scopus 로고
    • Math Works Incl, Image Processing Toolbox User's Guide, for Use with MATLAB. The Math Works Inc., Natick, MA.
    • Math Works Incl, 2007. Image Processing Toolbox User's Guide, for Use with MATLAB. The Math Works Inc., Natick, MA.
    • (2007)
  • 19
    • 79957695021 scopus 로고    scopus 로고
    • AdaBoost: The meta machine learning algorithm formulated by Yoav Freund and Robert Schapire. Available at: Accessed on 1 February, 2010.
    • Mertayak, C., 2007. AdaBoost: The meta machine learning algorithm formulated by Yoav Freund and Robert Schapire. Available at: Accessed on 1 February, 2010. http://www.mathworks.com/matlabcentral/fileexchange/21317-adaboost.
    • (2007)
    • Mertayak, C.1
  • 20
    • 25144451757 scopus 로고    scopus 로고
    • An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds
    • Oh H.H., Lim K.T., Chien S.I. An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recognition 2005, 38:2612-2625.
    • (2005) Pattern Recognition , vol.38 , pp. 2612-2625
    • Oh, H.H.1    Lim, K.T.2    Chien, S.I.3
  • 24
    • 79957697680 scopus 로고    scopus 로고
    • GML AdaBoost MATLAB Toolbox. Available at: Accessed on 2 October, 2009.
    • Vezhnevets, A. 2006. GML AdaBoost MATLAB Toolbox. Available at: Accessed on 2 October, 2009. http://research.graphicon.ru.
    • (2006)
    • Vezhnevets, A.1
  • 25
    • 61349184339 scopus 로고    scopus 로고
    • Support vector machines regression and modeling of greenhouse environment
    • Wang D., Wang M., Qiao X. Support vector machines regression and modeling of greenhouse environment. Computer and Electronic Agriculture 2009, 66(1):46-52.
    • (2009) Computer and Electronic Agriculture , vol.66 , Issue.1 , pp. 46-52
    • Wang, D.1    Wang, M.2    Qiao, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.