-
1
-
-
76549106519
-
Visual detection of blemishes in potatoes using minimalist boosted classifiers
-
Barnes M., Duckett T., Cielniak G., Stround G., Harper G. Visual detection of blemishes in potatoes using minimalist boosted classifiers. Journal of Food Engineering 2010, 98(3):339-346.
-
(2010)
Journal of Food Engineering
, vol.98
, Issue.3
, pp. 339-346
-
-
Barnes, M.1
Duckett, T.2
Cielniak, G.3
Stround, G.4
Harper, G.5
-
2
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Machine Learning 1995, 20(3):273-297.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
3
-
-
79957732689
-
-
Food and Agriculture Organization (FAO), Non-Wood Forest Products. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at: Accessed 17 February, 2011.
-
Food and Agriculture Organization (FAO), 1995. Non-Wood Forest Products. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at: Accessed 17 February, 2011. http://www.fao.org/docrep/v8929e/v8929e00.htm.
-
(1995)
-
-
-
4
-
-
0002978642
-
-
Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning
-
Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 148-156.
-
(1996)
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
5
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Freund Y., Schapire R.E. Improved boosting algorithms using confidence-rated predictions. Machine Learning 1999, 37(3):297-336.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman J., Hastie T., Tibshirani R. Additive logistic regression: A statistical view of boosting. The Annals of Statistics 2000, 28(2):337-374.
-
(2000)
The Annals of Statistics
, vol.28
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
67349098005
-
Supervised projection approach for boosting classifiers
-
García-Pedrajas N. Supervised projection approach for boosting classifiers. Pattern Recognition 2009, 42(9):1742-1760.
-
(2009)
Pattern Recognition
, vol.42
, Issue.9
, pp. 1742-1760
-
-
García-Pedrajas, N.1
-
9
-
-
79957744056
-
-
Digital Image Processing, third ed., Pearson Education Inc., Upper Saddle River, NJ.
-
Gonzalez, R.C., Woods, R.E., 2008.Digital Image Processing, third ed., Pearson Education Inc., Upper Saddle River, NJ.
-
(2008)
-
-
Gonzalez, R.C.1
Woods, R.E.2
-
11
-
-
55449125185
-
-
Support Vector Machines and Kernels for Computational Biology. PLoS Computational Biology. Available at: Accessed on Accessed on 30 April, 2010.
-
Hur, A.B., Ong, C.S., Sonnenburg, S., Scholkopf, B., Rätsch, G., 2008. Support Vector Machines and Kernels for Computational Biology. PLoS Computational Biology. Available at: Accessed on Accessed on 30 April, 2010. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547983/pdf/pcbi.1000173.pdf.
-
(2008)
-
-
Hur, A.B.1
Ong, C.S.2
Sonnenburg, S.3
Scholkopf, B.4
Rätsch, G.5
-
12
-
-
32644445913
-
Application of support vector machine technology for weed and nitrogen stress detection in corn
-
Karimi Y., Prasher S.O., Patel R.M., Kim S.H. Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture 2006, 51(1-2):99-109.
-
(2006)
Computers and Electronics in Agriculture
, vol.51
, Issue.1-2
, pp. 99-109
-
-
Karimi, Y.1
Prasher, S.O.2
Patel, R.M.3
Kim, S.H.4
-
13
-
-
34447645106
-
Non-destructive quality determination of pecans using soft X-rays
-
Kotwaliwale N., Weckler P.R., Brusewitz G.H., Kranzler G.A., Maness N.O. Non-destructive quality determination of pecans using soft X-rays. Postharvest Biology and Technology 2007, 45:372-380.
-
(2007)
Postharvest Biology and Technology
, vol.45
, pp. 372-380
-
-
Kotwaliwale, N.1
Weckler, P.R.2
Brusewitz, G.H.3
Kranzler, G.A.4
Maness, N.O.5
-
14
-
-
79957779381
-
-
Development of a new local adaptive thresholding method and classification algorithms for X-ray machine vision inspection of pecans. Ph. D dissertation, Department of Biosystems andAgricultural Engineering, Oklahoma State University, Stillwater, OK.
-
Mathanker, S.K., 2010. Development of a new local adaptive thresholding method and classification algorithms for X-ray machine vision inspection of pecans. Ph. D dissertation, Department of Biosystems andAgricultural Engineering, Oklahoma State University, Stillwater, OK.
-
(2010)
-
-
Mathanker, S.K.1
-
15
-
-
77954098220
-
Local adaptive thresholding of pecan X-ray images: Reverse water flow method
-
Mathanker S.K., Weckler P.R., Wang N., Bowser T., Maness N.O. Local adaptive thresholding of pecan X-ray images: Reverse water flow method. Transactions of the ASABE 2010, 53(3):961-969.
-
(2010)
Transactions of the ASABE
, vol.53
, Issue.3
, pp. 961-969
-
-
Mathanker, S.K.1
Weckler, P.R.2
Wang, N.3
Bowser, T.4
Maness, N.O.5
-
16
-
-
78649709558
-
-
b. AdaBoost and support vector machine classifiers for automatic weed control: Canola and Wheat. ASABE Meeting Paper No. 1008834. St. Joseph, Mich.: ASABE.
-
Mathanker, S.K., Weckler, P.R., Taylor, R.K., Fan, G., 2010b. AdaBoost and support vector machine classifiers for automatic weed control: Canola and Wheat. ASABE Meeting Paper No. 1008834. St. Joseph, Mich.: ASABE.
-
(2010)
-
-
Mathanker, S.K.1
Weckler, P.R.2
Taylor, R.K.3
Fan, G.4
-
17
-
-
79957782253
-
-
Math Works Incl, Image Processing Toolbox User's Guide, for Use with MATLAB. The Math Works Inc., Natick, MA.
-
Math Works Incl, 2007. Image Processing Toolbox User's Guide, for Use with MATLAB. The Math Works Inc., Natick, MA.
-
(2007)
-
-
-
19
-
-
79957695021
-
-
AdaBoost: The meta machine learning algorithm formulated by Yoav Freund and Robert Schapire. Available at: Accessed on 1 February, 2010.
-
Mertayak, C., 2007. AdaBoost: The meta machine learning algorithm formulated by Yoav Freund and Robert Schapire. Available at: Accessed on 1 February, 2010. http://www.mathworks.com/matlabcentral/fileexchange/21317-adaboost.
-
(2007)
-
-
Mertayak, C.1
-
20
-
-
25144451757
-
An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds
-
Oh H.H., Lim K.T., Chien S.I. An improved binarization algorithm based on a water flow model for document image with inhomogeneous backgrounds. Pattern Recognition 2005, 38:2612-2625.
-
(2005)
Pattern Recognition
, vol.38
, pp. 2612-2625
-
-
Oh, H.H.1
Lim, K.T.2
Chien, S.I.3
-
24
-
-
79957697680
-
-
GML AdaBoost MATLAB Toolbox. Available at: Accessed on 2 October, 2009.
-
Vezhnevets, A. 2006. GML AdaBoost MATLAB Toolbox. Available at: Accessed on 2 October, 2009. http://research.graphicon.ru.
-
(2006)
-
-
Vezhnevets, A.1
-
25
-
-
61349184339
-
Support vector machines regression and modeling of greenhouse environment
-
Wang D., Wang M., Qiao X. Support vector machines regression and modeling of greenhouse environment. Computer and Electronic Agriculture 2009, 66(1):46-52.
-
(2009)
Computer and Electronic Agriculture
, vol.66
, Issue.1
, pp. 46-52
-
-
Wang, D.1
Wang, M.2
Qiao, X.3
|