메뉴 건너뛰기




Volumn 51, Issue 3, 2011, Pages 701-711

Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model

Author keywords

Financial failure prediction; Forecasting horizon; Self organizing map

Indexed keywords

EMPIRICAL STUDIES; FINANCIAL FAILURE; GENERALIZATION ERROR; KOHONEN MAP; LOGISTIC REGRESSIONS; MODEL RELIABILITY; PREDICTION HORIZON; PREDICTION MODEL; SELF ORGANIZING; SURVIVAL ANALYSIS;

EID: 79955921715     PISSN: 01679236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.dss.2011.04.001     Document Type: Article
Times cited : (80)

References (56)
  • 1
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of adaboost and neural networks
    • E. Alfaro, N. Garcia, M. Games, and D. Elizondo Bankruptcy forecasting: an empirical comparison of adaboost and neural networks Decision Support Systems 45 2008 110 122
    • (2008) Decision Support Systems , vol.45 , pp. 110-122
    • Alfaro, E.1    Garcia, N.2    Games, M.3    Elizondo, D.4
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios, discriminant analysis and the prediction of corporate bankruptcy Journal of Finance 23 1968 589 609
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 4
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural network - The Italian experience
    • E.I. Altman, G. Marco, and F. Varetto Corporate distress diagnosis: comparisons using linear discriminant analysis and neural network - the Italian experience Journal of Banking and Finance 18 1994 505 529
    • (1994) Journal of Banking and Finance , vol.18 , pp. 505-529
    • Altman, E.I.1    Marco, G.2    Varetto, F.3
  • 7
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • DOI 10.1109/72.935101, PII S1045922701050068
    • A.F. Atiya Bankruptcy prediction for credit risk using neural networks: a survey and new results IEEE Transactions on Neural Networks 7 2001 929 935 (Pubitemid 32732830)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.F.1
  • 8
    • 84980201928 scopus 로고
    • Bankruptcy prediction: An investigation of cash flow based models
    • A. Aziz, D.C. Emanuel, and G.C. Lawson Bankruptcy prediction: an investigation of cash flow based models Journal of Management Studies 25 1988 419 437
    • (1988) Journal of Management Studies , vol.25 , pp. 419-437
    • Aziz, A.1    Emanuel, D.C.2    Lawson, G.C.3
  • 10
    • 33144462955 scopus 로고    scopus 로고
    • 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems
    • DOI 10.1016/j.bar.2005.09.001, PII S0890838905000636
    • S. Balcaen, and H. Ooghe 35 years of studies on business failure: an overview of the classical statistical methodologies and their related problems British Accounting Review 38 2006 63 93 (Pubitemid 43263600)
    • (2006) British Accounting Review , vol.38 , Issue.1 , pp. 63-93
    • Balcaen, S.1    Ooghe, H.2
  • 11
    • 0002419827 scopus 로고
    • Classifying financial distress in the life insurance industry
    • R. Barniv, and A. Hershbarger Classifying financial distress in the life insurance industry Journal of Risk and Insurance 57 1990 110 136
    • (1990) Journal of Risk and Insurance , vol.57 , pp. 110-136
    • Barniv, R.1    Hershbarger, A.2
  • 12
    • 0010328418 scopus 로고
    • Identifying financial distress in the insurance industry: A synthesis of methodological and empirical issues
    • R. Barniv, and J.B. McDonald Identifying financial distress in the insurance industry: a synthesis of methodological and empirical issues Journal of Risk and Insurance 59 1992 543 574
    • (1992) Journal of Risk and Insurance , vol.59 , pp. 543-574
    • Barniv, R.1    McDonald, J.B.2
  • 13
    • 84978564281 scopus 로고
    • The effectiveness of incorporating stability measures in company failure models
    • J. Betts, and D. Belhoul The effectiveness of incorporating stability measures in company failure models Journal of Business Finance and Accounting 14 1987 323 334
    • (1987) Journal of Business Finance and Accounting , vol.14 , pp. 323-334
    • Betts, J.1    Belhoul, D.2
  • 14
    • 0001835543 scopus 로고
    • Failing company discriminant analysis
    • M. Blum Failing company discriminant analysis Journal of Accounting Research 12 1974 1 25
    • (1974) Journal of Accounting Research , vol.12 , pp. 1-25
    • Blum, M.1
  • 15
    • 34547292874 scopus 로고    scopus 로고
    • A hybrid genetic model for the prediction of corporate failure
    • A. Brabazon, and P.B. Keenan A hybrid genetic model for the prediction of corporate failure Computational Management Science 1 2004 293 310
    • (2004) Computational Management Science , vol.1 , pp. 293-310
    • Brabazon, A.1    Keenan, P.B.2
  • 18
    • 0012580072 scopus 로고
    • Recognizing financial distress patterns using a neural network tool
    • P.K. Coats, and L.F. Fant Recognizing financial distress patterns using a neural network tool Financial Management 22 1993 142 154
    • (1993) Financial Management , vol.22 , pp. 142-154
    • Coats, P.K.1    Fant, L.F.2
  • 22
    • 0000070103 scopus 로고
    • The aftermath of organizational decline: A longitudinal study of the strategic and managerial characteristics of declining firms
    • R.A. D'Aveni The aftermath of organizational decline: a longitudinal study of the strategic and managerial characteristics of declining firms Academy of Management Journal 32 1989 577 605
    • (1989) Academy of Management Journal , vol.32 , pp. 577-605
    • D'Aveni, R.A.1
  • 23
    • 84977341882 scopus 로고
    • Ratio stability and corporate failure
    • I.G. Dambolena, and S.J. Khoury Ratio stability and corporate failure Journal of Finance 35 1980 1017 1026
    • (1980) Journal of Finance , vol.35 , pp. 1017-1026
    • Dambolena, I.G.1    Khoury, S.J.2
  • 25
    • 0042758626 scopus 로고    scopus 로고
    • Multicriteria discrimination method for the prediction of financial distress: The case of Greece
    • M. Doumpos, and C.A. Zopounidis Multicriteria discrimination method for the prediction of financial distress: the case of Greece Multinational Finance Journal 3 1999 71 101
    • (1999) Multinational Finance Journal , vol.3 , pp. 71-101
    • Doumpos, M.1    Zopounidis, C.A.2
  • 26
    • 77952537146 scopus 로고    scopus 로고
    • Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy
    • P. du Jardin Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy Neurocomputing 73 2010 2047 2060
    • (2010) Neurocomputing , vol.73 , pp. 2047-2060
    • Du Jardin, P.1
  • 27
    • 84974012882 scopus 로고
    • An empirical test of financial ratio analysis for small business failure prediction
    • R.O. Edmister An empirical test of financial ratio analysis for small business failure prediction Journal of Financial and Quantitative Analysis 7 1972 1477 1493
    • (1972) Journal of Financial and Quantitative Analysis , vol.7 , pp. 1477-1493
    • Edmister, R.O.1
  • 33
    • 0042857342 scopus 로고    scopus 로고
    • Comparative analysis of failure prediction methods: The Finnish case
    • T. Laitinen, and M. Kankaanpaa Comparative analysis of failure prediction methods: the Finnish case European Accounting Review 8 1999 67 92
    • (1999) European Accounting Review , vol.8 , pp. 67-92
    • Laitinen, T.1    Kankaanpaa, M.2
  • 35
    • 0000407825 scopus 로고    scopus 로고
    • Bankruptcy prediction: Application of the Taylor's expansion in logistic regression
    • E.K. Laitinen, and T. Laitinen Bankruptcy prediction: application of the Taylor's expansion in logistic regression International Review of Financial Analysis 9 2000 327 349
    • (2000) International Review of Financial Analysis , vol.9 , pp. 327-349
    • Laitinen, E.K.1    Laitinen, T.2
  • 36
    • 0000740938 scopus 로고
    • A five-state financial distress prediction model
    • A.H. Lau A five-state financial distress prediction model Journal of Accounting Research 25 1987 127 138
    • (1987) Journal of Accounting Research , vol.25 , pp. 127-138
    • Lau, A.H.1
  • 37
    • 16244365542 scopus 로고    scopus 로고
    • A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms
    • DOI 10.1016/j.eswa.2005.01.004, PII S0957417405000023
    • K. Lee, D. Booth, and P. Alam A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms Expert Systems with Applications 29 2005 1 16 (Pubitemid 40454388)
    • (2005) Expert Systems with Applications , vol.29 , Issue.1 , pp. 1-16
    • Lee, K.1    Booth, D.2    Alam, P.3
  • 39
    • 0000228352 scopus 로고
    • A Monte-Carlo study of thirty internal criterion measures for cluster analysis
    • G.W. Milligan A Monte-Carlo study of thirty internal criterion measures for cluster analysis Psychometrika 46 1981 187 199
    • (1981) Psychometrika , vol.46 , pp. 187-199
    • Milligan, G.W.1
  • 40
    • 0002772765 scopus 로고
    • Forecasting financial failure: A re-examination
    • R.C. Moyer Forecasting financial failure: a re-examination Financial Management 6 1977 11 17
    • (1977) Financial Management , vol.6 , pp. 11-17
    • Moyer, R.C.1
  • 43
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • J.A. Ohlson Financial ratios and the probabilistic prediction of bankruptcy Journal of Accounting Research 18 1980 109 131
    • (1980) Journal of Accounting Research , vol.18 , pp. 109-131
    • Ohlson, J.A.1
  • 45
    • 0032021890 scopus 로고    scopus 로고
    • Using feature construction to improve the performance of neural networks
    • S. Piramuthu, H. Ravagan, and M.J. Show Using feature construction to improve the performance of neural networks Management Science 44 1998 416 430 (Pubitemid 128568188)
    • (1998) Management Science , vol.44 , Issue.3 , pp. 416-430
    • Piramuthu, S.1    Ragavan, H.2    Shaw, M.J.3
  • 46
    • 33747614868 scopus 로고    scopus 로고
    • Bankruptcy prediction: The influence of the year prior to failure selected for model building and the effects in a period of economic decline
    • P.P.M. Pompe, and A.J. Bilderbeek Bankruptcy prediction: the influence of the year prior to failure selected for model building and the effects in a period of economic decline International Journal of Intelligent Systems in Accounting, Finance and Management 13 2005 95 112
    • (2005) International Journal of Intelligent Systems in Accounting, Finance and Management , vol.13 , pp. 95-112
    • Pompe, P.P.M.1    Bilderbeek, A.J.2
  • 47
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • J.W. Sammon A nonlinear mapping for data structure analysis IEEE Transactions on Computers c-18 1969 401 409
    • (1969) IEEE Transactions on Computers , vol.C18 , pp. 401-409
    • Sammon, J.W.1
  • 48
    • 0030190036 scopus 로고    scopus 로고
    • Self organizing neural networks for financial diagnosis
    • DOI 10.1016/0167-9236(95)00033-X
    • C. Serrano-Cinca Self-organizing neural networks for financial diagnosis Decision Support Systems 17 1996 227 238 (Pubitemid 126359818)
    • (1996) Decision Support Systems , vol.17 , Issue.3 , pp. 227-238
    • Serrano-Cinca, C.1
  • 49
    • 0041991202 scopus 로고
    • Early warning indicators of business failure
    • S. Sharma, and V. Mahajan Early warning indicators of business failure Journal of Marketing 44 1980 80 89
    • (1980) Journal of Marketing , vol.44 , pp. 80-89
    • Sharma, S.1    Mahajan, V.2
  • 50
    • 0008104389 scopus 로고    scopus 로고
    • Forecasting bankruptcy more accurately: A simple hazard model
    • T. Shumway Forecasting bankruptcy more accurately: a simple hazard model Journal of Business 74 2001 101 124
    • (2001) Journal of Business , vol.74 , pp. 101-124
    • Shumway, T.1
  • 51
    • 84963217692 scopus 로고
    • The assessment of company solvency and performance using a statistical model
    • R.J. Taffler The assessment of company solvency and performance using a statistical model Accounting and Business Research 13 1983 295 3074
    • (1983) Accounting and Business Research , vol.13 , pp. 295-3074
    • Taffler, R.J.1
  • 52
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • K.Y. Tam, and M.Y. Kiang Managerial applications of neural networks: the case of bank failure predictions Management Science 38 1992 926 947
    • (1992) Management Science , vol.38 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 53
    • 0142135951 scopus 로고    scopus 로고
    • Learning about Failure: Bankruptcy, Firm Age, and the Resource-Based View
    • S. Thornhill, and R. Amit Learning about failure: bankruptcy, firm age, and the resource-based view Organization Science 14 2003 497 509 (Pubitemid 37291613)
    • (2003) Organization Science , vol.14 , Issue.5 , pp. 497-509
    • Thornhill, S.1    Amit, R.2
  • 54
    • 1942423173 scopus 로고    scopus 로고
    • GenSo-EWS: A novel neural-fuzzy based early warning system for predicting bank failures
    • DOI 10.1016/j.neunet.2003.11.006, PII S0893608003002983
    • W.L. Tung, C. Quek, and P. Cheng GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failures Neural Networks 17 2004 567 587 (Pubitemid 38510340)
    • (2004) Neural Networks , vol.17 , Issue.4 , pp. 567-587
    • Tung, W.L.1    Quek, C.2    Cheng, P.3
  • 55
    • 79955880285 scopus 로고    scopus 로고
    • A comparison of corporate failure models in Australia: Hybrid neural networks, logit models and discriminant analysis
    • RMIT Business, School of Economics and Finance
    • J. Yim, and H. Mitchell A comparison of corporate failure models in Australia: hybrid neural networks, logit models and discriminant analysis Working Paper 2002 RMIT Business, School of Economics and Finance
    • (2002) Working Paper
    • Yim, J.1    Mitchell, H.2
  • 56
    • 0011292509 scopus 로고    scopus 로고
    • Neural networks versus logit regression models for predicting financial distress response variables
    • J.M. Zurada, B.P. Foster, T.J. Ward, and R.M. Barker Neural networks versus logit regression models for predicting financial distress response variables Journal of Applied Business Research 15 1998 21 29
    • (1998) Journal of Applied Business Research , vol.15 , pp. 21-29
    • Zurada, J.M.1    Foster, B.P.2    Ward, T.J.3    Barker, R.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.