메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 2047-2060

Predicting bankruptcy using neural networks and other classification methods: The influence of variable selection techniques on model accuracy

Author keywords

Financial failure; Neural network; Variable selection

Indexed keywords

CLASSIFICATION METHODS; FINANCIAL FAILURE; FINANCIAL PROFILES; MODEL ACCURACY; PREDICTION ACCURACY; TYPE-I ERROR; VARIABLE SELECTION;

EID: 77952537146     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.11.034     Document Type: Article
Times cited : (95)

References (83)
  • 1
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: a survey and new results
    • Atiya A. Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Transactions on Neural Networks 2001, 7:929-935.
    • (2001) IEEE Transactions on Neural Networks , vol.7 , pp. 929-935
    • Atiya, A.1
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • Altman E. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance 1968, 19:589-609.
    • (1968) Journal of Finance , vol.19 , pp. 589-609
    • Altman, E.1
  • 3
    • 0000407825 scopus 로고    scopus 로고
    • Bankruptcy prediction: application of the Taylor's expansion in logistic regression
    • Laitinen E., Laitinen T. Bankruptcy prediction: application of the Taylor's expansion in logistic regression. International Review of Financial Analysis 2000, 9:327-349.
    • (2000) International Review of Financial Analysis , vol.9 , pp. 327-349
    • Laitinen, E.1    Laitinen, T.2
  • 4
    • 0025559251 scopus 로고
    • A neural network model for bankruptcy prediction, in: The IEEE International Joint Conference on Neural Networks.
    • M. Odom, R. Sharda, A neural network model for bankruptcy prediction, in: The IEEE International Joint Conference on Neural Networks, 1990, pp. 163-168.
    • (1990)
    • Odom, M.1    Sharda, R.2
  • 5
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • Ohlson J. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 1980, 18:109-131.
    • (1980) Journal of Accounting Research , vol.18 , pp. 109-131
    • Ohlson, J.1
  • 6
    • 84978596402 scopus 로고
    • Non-financial symptoms and the prediction of small company failure: a test of Argenti's hypothesis
    • Keasey K., Watson R. Non-financial symptoms and the prediction of small company failure: a test of Argenti's hypothesis. Journal of Business Finance and Accounting 1987, 14:335-354.
    • (1987) Journal of Business Finance and Accounting , vol.14 , pp. 335-354
    • Keasey, K.1    Watson, R.2
  • 8
    • 0031339518 scopus 로고    scopus 로고
    • Financial decision support with hybrid genetic and neural based modeling tools
    • Kumar N., Krovi R., Rajagopalan B. Financial decision support with hybrid genetic and neural based modeling tools. European Journal of Operational Research 1997, 103:339-349.
    • (1997) European Journal of Operational Research , vol.103 , pp. 339-349
    • Kumar, N.1    Krovi, R.2    Rajagopalan, B.3
  • 9
    • 43949151078 scopus 로고
    • Corporate distress diagnosis: comparisons using linear discriminant analysis and neural network-the Italian experience
    • Altman E., Marco G., Varetto F. Corporate distress diagnosis: comparisons using linear discriminant analysis and neural network-the Italian experience. Journal of Banking and Finance 1994, 18:505-529.
    • (1994) Journal of Banking and Finance , vol.18 , pp. 505-529
    • Altman, E.1    Marco, G.2    Varetto, F.3
  • 11
    • 77952535183 scopus 로고
    • A comparative study of neural networks in bankruptcy prediction, in: The 10th Conference on Artificial Intelligence Research in Finland.
    • B. Back, G. Oosterom, K. Sere, M. van Wezel, A comparative study of neural networks in bankruptcy prediction, in: The 10th Conference on Artificial Intelligence Research in Finland, 1994, pp. 140-148.
    • (1994) , pp. 140-148
    • Back, B.1    Oosterom, G.2    Sere, K.3    Van Wezel, M.4
  • 12
    • 34547292874 scopus 로고    scopus 로고
    • A hybrid genetic model for the prediction of corporate failure
    • Brabazon A., Keenan P. A hybrid genetic model for the prediction of corporate failure. Computational Management Science 2004, 1:293-310.
    • (2004) Computational Management Science , vol.1 , pp. 293-310
    • Brabazon, A.1    Keenan, P.2
  • 13
    • 1642491872 scopus 로고    scopus 로고
    • Improving decision effectiveness of artificial neural networks: a modified genetic algorithm approach
    • Sexton R., Sriram R., Etheridge H. Improving decision effectiveness of artificial neural networks: a modified genetic algorithm approach. Decision Sciences 2003, 34:421-442.
    • (2003) Decision Sciences , vol.34 , pp. 421-442
    • Sexton, R.1    Sriram, R.2    Etheridge, H.3
  • 14
    • 0012580072 scopus 로고
    • Recognizing financial distress patterns using a neural network tool
    • Coats P., Fant L. Recognizing financial distress patterns using a neural network tool. Financial Management 1993, 22:142-154.
    • (1993) Financial Management , vol.22 , pp. 142-154
    • Coats, P.1    Fant, L.2
  • 15
    • 77952470515 scopus 로고
    • Bankruptcy prediction by neural networks, in: Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real-World Performance.
    • E. Rahimian, S. Singh, T. Thammachote, R. Virmani, Bankruptcy prediction by neural networks, in: Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real-World Performance, 1993, pp. 159-171.
    • (1993) , pp. 159-171
    • Rahimian, E.1    Singh, S.2    Thammachote, T.3    Virmani, R.4
  • 16
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Leray P., Gallinari P. Feature selection with neural networks. Behaviormetrika 1998, 26:145-166.
    • (1998) Behaviormetrika , vol.26 , pp. 145-166
    • Leray, P.1    Gallinari, P.2
  • 17
    • 7944229970 scopus 로고
    • Zeta analysis: a new model to identify bankruptcy risk of corporations
    • Altman E., Haldeman R., Narayanan P. Zeta analysis: a new model to identify bankruptcy risk of corporations. Journal of Banking and Finance 1977, 1:29-51.
    • (1977) Journal of Banking and Finance , vol.1 , pp. 29-51
    • Altman, E.1    Haldeman, R.2    Narayanan, P.3
  • 18
    • 0002554419 scopus 로고    scopus 로고
    • Financial ratios as predictors of failure, empirical research in accounting, selected studies
    • Beaver W. Financial ratios as predictors of failure, empirical research in accounting, selected studies. Journal of Accounting Research 1996, 4:71-111.
    • (1996) Journal of Accounting Research , vol.4 , pp. 71-111
    • Beaver, W.1
  • 19
    • 0001835543 scopus 로고
    • Failing company discriminant analysis
    • Blum M. Failing company discriminant analysis. Journal of Accounting Research 1974, 12:503-512.
    • (1974) Journal of Accounting Research , vol.12 , pp. 503-512
    • Blum, M.1
  • 20
    • 0000275837 scopus 로고
    • A discriminant analysis of predictors of business failures
    • Deakin E. A discriminant analysis of predictors of business failures. Journal of Accounting Research 1972, 10:167-179.
    • (1972) Journal of Accounting Research , vol.10 , pp. 167-179
    • Deakin, E.1
  • 21
    • 77952470901 scopus 로고
    • Financing small corporations in five manufacturing industries, National Bureau of Economic Research, Financial Research Program III, Studies in Business Financing.
    • C. Merwin, Financing small corporations in five manufacturing industries, National Bureau of Economic Research, Financial Research Program III, Studies in Business Financing, 1942, pp. 1926-1936.
    • (1942) , pp. 1926-1936
    • Merwin, C.1
  • 22
    • 77952511063 scopus 로고
    • A demonstration of ratio analysis, Bulletin no. 40, University of Illinois, Bureau of Business Research.
    • J. Ramser, L. Foster, A demonstration of ratio analysis, Bulletin no. 40, University of Illinois, Bureau of Business Research, 1931.
    • (1931)
    • Ramser, J.1    Foster, L.2
  • 23
    • 77952492957 scopus 로고    scopus 로고
    • International comparison of failure prediction models from different countries: an empirical analysis, Working Paper, Ghent University.
    • H. Ooghe, H. Claus, N. Sierens, J. Camerlynck, International comparison of failure prediction models from different countries: an empirical analysis, Working Paper, Ghent University, 1999.
    • (1999)
    • Ooghe, H.1    Claus, H.2    Sierens, N.3    Camerlynck, J.4
  • 24
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection roblem, in: The 11th International Conference.
    • G. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in: The 11th International Conference, 1994, pp. 121-129.
    • (1994) , pp. 121-129
    • John, G.1    Kohavi, R.2    Pfleger, K.3
  • 25
    • 85164392958 scopus 로고
    • A study of cross validation and bootstrap for accuracy estimation and model selection, in: The 14th International Joint Conference on Artificial Intelligence.
    • R. Kohavi, A study of cross validation and bootstrap for accuracy estimation and model selection, in: The 14th International Joint Conference on Artificial Intelligence, 1995, pp. 1137-1143.
    • (1995)
    • Kohavi, R.1
  • 26
    • 77952521162 scopus 로고    scopus 로고
    • Choosing bankruptcy predictors using discriminant analysis, logit analysis and genetic algorithms, Technical Report, Turku Centre for Computer Science.
    • B. Back, G. Oosterom, K. Sere, M. van Wezel, Choosing bankruptcy predictors using discriminant analysis, logit analysis and genetic algorithms, Technical Report, Turku Centre for Computer Science, 1996.
    • (1996)
    • Back, B.1    Oosterom, G.2    Sere, K.3    Van Wezel, M.4
  • 27
    • 0030407801 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms for bankruptcy predictions
    • Back B., Oosterom G., Sere K. Neural networks and genetic algorithms for bankruptcy predictions. Expert Systems with Applications 1996, 11:407-413.
    • (1996) Expert Systems with Applications , vol.11 , pp. 407-413
    • Back, B.1    Oosterom, G.2    Sere, K.3
  • 28
    • 0033277401 scopus 로고    scopus 로고
    • Expert, linear models and nonlinear models of expert decision making in bankruptcy prediction: a lens model analysis
    • Kim C., McLeod R. Expert, linear models and nonlinear models of expert decision making in bankruptcy prediction: a lens model analysis. Journal of Management Information Systems 1999, 16:189-206.
    • (1999) Journal of Management Information Systems , vol.16 , pp. 189-206
    • Kim, C.1    McLeod, R.2
  • 29
    • 84904276881 scopus 로고    scopus 로고
    • Genetically optimized neural network classifiers for bankruptcy prediction-an empirical study, in: The 29th Hawaii International Conference on System Sciences.
    • J. Wallrafen, P. Protzel, H. Popp, Genetically optimized neural network classifiers for bankruptcy prediction-an empirical study, in: The 29th Hawaii International Conference on System Sciences, 1996, pp. 419-426.
    • (1996) , pp. 419-426
    • Wallrafen, J.1    Protzel, P.2    Popp, H.3
  • 30
    • 33746377912 scopus 로고    scopus 로고
    • Predicting the survival or failure of click-and-mortar corporations: a knowledge discovery approach
    • Bose I., Pal R. Predicting the survival or failure of click-and-mortar corporations: a knowledge discovery approach. European Journal of Operational Research 2006, 174:959-982.
    • (2006) European Journal of Operational Research , vol.174 , pp. 959-982
    • Bose, I.1    Pal, R.2
  • 31
    • 0033686247 scopus 로고    scopus 로고
    • Application of feature extractive algorithm to bankruptcy prediction, in: The IEEE-INNS-ENNS International Joint Conference on Neural Network.
    • C. Charalambous, A. Charitou, F. Kaourou, Application of feature extractive algorithm to bankruptcy prediction, in: The IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000, pp. 303-308.
    • (2000) , pp. 303-308
    • Charalambous, C.1    Charitou, A.2    Kaourou, F.3
  • 33
    • 77952498033 scopus 로고    scopus 로고
    • Bankruptcy prediction models: probabilistic neural networks versus discriminant analysis and backpropagation neural networks, Working Paper, Department of Business Computing, City University.
    • E. Tyree, J. Long, Bankruptcy prediction models: probabilistic neural networks versus discriminant analysis and backpropagation neural networks, Working Paper, Department of Business Computing, City University, 1996.
    • (1996)
    • Tyree, E.1    Long, J.2
  • 34
    • 0031295175 scopus 로고    scopus 로고
    • Hvs: a heuristic for variable selection in multilayer artificial neural network classifier, in: The International Conference on Artificial Neural Networks and Intelligent Engineering.
    • M. Yacoub, Y. Bennani, Hvs: a heuristic for variable selection in multilayer artificial neural network classifier, in: The International Conference on Artificial Neural Networks and Intelligent Engineering, 1997, pp. 527-532.
    • (1997) , pp. 527-532
    • Yacoub, M.1    Bennani, Y.2
  • 35
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 36
    • 3543107923 scopus 로고    scopus 로고
    • Bagging equalizes influence
    • Grandvalet Y. Bagging equalizes influence. Machine Learning 2004, 55:251-270.
    • (2004) Machine Learning , vol.55 , pp. 251-270
    • Grandvalet, Y.1
  • 37
    • 77952486893 scopus 로고    scopus 로고
    • De l'analyse de la performance à la prévision de défaillance: les apports de la classification neuronale, Ph.D. Dissertation, Jean-Moulin University, Lyon III,
    • M. Pérez, De l'analyse de la performance à la prévision de défaillance: les apports de la classification neuronale, Ph.D. Dissertation, Jean-Moulin University, Lyon III, 2002.
    • (2002)
    • Pérez, M.1
  • 38
    • 56349142889 scopus 로고    scopus 로고
    • Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: a comparative analysis in the sample of savings deposit insurance fund (sdif) transferred banks in Turkey
    • Boyacioglu M., Kara Y., Baykan O. Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: a comparative analysis in the sample of savings deposit insurance fund (sdif) transferred banks in Turkey. Expert Systems with Applications 2009, 36:3355-3366.
    • (2009) Expert Systems with Applications , vol.36 , pp. 3355-3366
    • Boyacioglu, M.1    Kara, Y.2    Baykan, O.3
  • 39
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: an empirical comparison of adaboost and neural networks
    • Alfaro E., Garcia N., Games M., Ellison D. Bankruptcy forecasting: an empirical comparison of adaboost and neural networks. Decision Support Systems 2008, 45:110-122.
    • (2008) Decision Support Systems , vol.45 , pp. 110-122
    • Alfaro, E.1    Garcia, N.2    Games, M.3    Ellison, D.4
  • 40
    • 43549109105 scopus 로고    scopus 로고
    • Abductive networks for two-group classification: a comparison with neural networks
    • Bruges, Belgium
    • A. Agarwal, Abductive networks for two-group classification: a comparison with neural networks, in: ESANN 2008, European Symposium on Artificial Neural Networks, Bruges, Belgium, vol. 15, 1999, pp. 1-12.
    • (1999) ESANN 2008, European Symposium on Artificial Neural Networks , vol.15 , pp. 1-12
    • Agarwal, A.1
  • 41
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • Wilson R.L., Sharda R. Bankruptcy prediction using neural networks. Decision Support System 1994, 32:545-557.
    • (1994) Decision Support System , vol.32 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 42
    • 0011340738 scopus 로고    scopus 로고
    • Bankruptcy prediction of financially stressed firms: an examination of the predictive accuracy of artificial neural networks, international journal of intelligent systems in accounting
    • Anandarajan M., Lee P., Anandarajan A. Bankruptcy prediction of financially stressed firms: an examination of the predictive accuracy of artificial neural networks, international journal of intelligent systems in accounting. Finance and Management 2001, 10:69-81.
    • (2001) Finance and Management , vol.10 , pp. 69-81
    • Anandarajan, M.1    Lee, P.2    Anandarajan, A.3
  • 43
    • 0002818221 scopus 로고
    • Neural nets vs. logistic regression: a comparison of each model's ability to predict commercial bank failures, in: The 1990 Deloitte and Touche-University of Kansas Symposium on Auditing Problems.
    • T. Bell, G. Ribar, J. Verchio, Neural nets vs. logistic regression: a comparison of each model's ability to predict commercial bank failures, in: The 1990 Deloitte and Touche-University of Kansas Symposium on Auditing Problems, 1990, pp. 29-58.
    • (1990) , pp. 29-58
    • Bell, T.1    Ribar, G.2    Verchio, J.3
  • 44
    • 77952491434 scopus 로고    scopus 로고
    • Bankruptcy prediction by generalized additive models, Statistical Report, Department of Mathematics, University of Oslo.
    • D. Berg, Bankruptcy prediction by generalized additive models, Statistical Report, Department of Mathematics, University of Oslo, 2005.
    • Berg, D.1
  • 45
    • 0029492199 scopus 로고
    • Effectiveness of neural network types for prediction of business failure
    • Boritz J., Kennedy D. Effectiveness of neural network types for prediction of business failure. Expert Systems with Applications 1995, 9:589-609.
    • (1995) Expert Systems with Applications , vol.9 , pp. 589-609
    • Boritz, J.1    Kennedy, D.2
  • 46
    • 0004398518 scopus 로고    scopus 로고
    • Feedforward neural networks in the classification of financial information
    • Sen T., Ghandforoush P., Stivason C.T. Feedforward neural networks in the classification of financial information. European Journal of Finance 1997, 3:183-202.
    • (1997) European Journal of Finance , vol.3 , pp. 183-202
    • Sen, T.1    Ghandforoush, P.2    Stivason, C.T.3
  • 49
    • 77952531938 scopus 로고
    • Bankruptcy prediction using artificial neural systems, Working Paper, University of Mississippi, School of Business,.
    • R.E. Dorsey, R. Edmister, J. Johnson, Bankruptcy prediction using artificial neural systems, Working Paper, University of Mississippi, School of Business, 1995.
    • (1995)
    • Dorsey, R.E.1    Edmister, R.2    Johnson, J.3
  • 50
    • 0000388853 scopus 로고    scopus 로고
    • A comparison of the relative costs of financial distress models: artificial neural networks, logit and multivariate discriminant analysis
    • Etheridge H., Sriram R. A comparison of the relative costs of financial distress models: artificial neural networks, logit and multivariate discriminant analysis. International Journal of Intelligent Systems in Accounting, Finance and Management 1997, 6:235-248.
    • (1997) International Journal of Intelligent Systems in Accounting, Finance and Management , vol.6 , pp. 235-248
    • Etheridge, H.1    Sriram, R.2
  • 51
    • 0033685052 scopus 로고    scopus 로고
    • Selecting bankruptcy predictors using a support vector machine approach, in: The IEEE-INNS-ENNS International Joint Conference on Neural Networks.
    • A. Fan, M. Palaniswami, Selecting bankruptcy predictors using a support vector machine approach, in: The IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000, pp. 354-359.
    • (2000) , pp. 354-359
    • Fan, A.1    Palaniswami, M.2
  • 53
    • 0141462324 scopus 로고
    • Comparing classification accuracy of neural networks, binary logit regression and discriminant analysis for insolvency prediction of life insurer
    • Goss E., Ramchandani H. Comparing classification accuracy of neural networks, binary logit regression and discriminant analysis for insolvency prediction of life insurer. Journal of Economics and Finance 1995, 19:1-18.
    • (1995) Journal of Economics and Finance , vol.19 , pp. 1-18
    • Goss, E.1    Ramchandani, H.2
  • 54
    • 0001618449 scopus 로고
    • Life insurer financial distress prediction: a neural network model
    • Huang C., Dorsey R., Boose M. Life insurer financial distress prediction: a neural network model. Journal of Insurance Regulation 1994, 13:131-167.
    • (1994) Journal of Insurance Regulation , vol.13 , pp. 131-167
    • Huang, C.1    Dorsey, R.2    Boose, M.3
  • 55
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural networks and discriminant analysis
    • Jo I.H.H., Lee H. Bankruptcy prediction using case-based reasoning, neural networks and discriminant analysis. Expert Systems with Applications 1997, 13:97-108.
    • (1997) Expert Systems with Applications , vol.13 , pp. 97-108
    • Jo, I.H.H.1    Lee, H.2
  • 56
    • 0345404391 scopus 로고    scopus 로고
    • Predicting bankruptcies with the self-organizing map
    • Kiviluoto K. Predicting bankruptcies with the self-organizing map. Neurocomputing 1998, 21:191-220.
    • (1998) Neurocomputing , vol.21 , pp. 191-220
    • Kiviluoto, K.1
  • 58
    • 0042857342 scopus 로고    scopus 로고
    • Comparative analysis of failure prediction methods: the Finnish case
    • Laitinen T., Kankaanpaa M. Comparative analysis of failure prediction methods: the Finnish case. European Accounting Review 1999, 8:67-92.
    • (1999) European Accounting Review , vol.8 , pp. 67-92
    • Laitinen, T.1    Kankaanpaa, M.2
  • 59
    • 0030241497 scopus 로고    scopus 로고
    • Hybrid neural network models for bankruptcy predictions
    • Lee K., Han I., Kwon Y. Hybrid neural network models for bankruptcy predictions. Decision Support Systems 1996, 18:63-72.
    • (1996) Decision Support Systems , vol.18 , pp. 63-72
    • Lee, K.1    Han, I.2    Kwon, Y.3
  • 60
    • 16244365542 scopus 로고    scopus 로고
    • A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms
    • Lee K., Booth D., Alam P. A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications 2005, 29:1-16.
    • (2005) Expert Systems with Applications , vol.29 , pp. 1-16
    • Lee, K.1    Booth, D.2    Alam, P.3
  • 61
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: the bankruptcy case
    • Leshno M., Spector Y. Neural network prediction analysis: the bankruptcy case. Neurocomputing 1996, 10:125-147.
    • (1996) Neurocomputing , vol.10 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 62
    • 1642580865 scopus 로고    scopus 로고
    • Neural networks in financial failure prediction: a revisit, in: The Annual Decision Sciences Institute Conference.
    • X. Li, J. Gupta, Neural networks in financial failure prediction: a revisit, in: The Annual Decision Sciences Institute Conference, 2002, pp. 233-238.
    • (2002) , pp. 233-238
    • Li, X.1    Gupta, J.2
  • 63
    • 0004449990 scopus 로고    scopus 로고
    • Predicting bankruptcy using recursive partitioning and a realistically proportioned data set
    • McKee T., Greenstein M. Predicting bankruptcy using recursive partitioning and a realistically proportioned data set. Journal of Forecasting 2000, 19:219-230.
    • (2000) Journal of Forecasting , vol.19 , pp. 219-230
    • McKee, T.1    Greenstein, M.2
  • 64
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • Min S., Lee J., Han I. Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Systems with Applications 2006, 31:652-660.
    • (2006) Expert Systems with Applications , vol.31 , pp. 652-660
    • Min, S.1    Lee, J.2    Han, I.3
  • 65
    • 77952516994 scopus 로고    scopus 로고
    • Business failure prediction with support vector machines and neural networks: a comparative study, in: The 9th Asia-Pacific Decision Sciences Institute Conference.
    • J. Min, Y. Lee, Business failure prediction with support vector machines and neural networks: a comparative study, in: The 9th Asia-Pacific Decision Sciences Institute Conference, 2004.
    • (2004)
    • Min, J.1    Lee, Y.2
  • 66
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • Min J., Lee Y.C. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications 2005, 28:603-614.
    • (2005) Expert Systems with Applications , vol.28 , pp. 603-614
    • Min, J.1    Lee, Y.C.2
  • 67
    • 13544265385 scopus 로고    scopus 로고
    • A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem
    • Pendharkar P. A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem. Computers and Operations Research 2005, 32:2561-2582.
    • (2005) Computers and Operations Research , vol.32 , pp. 2561-2582
    • Pendharkar, P.1
  • 68
    • 0032021890 scopus 로고    scopus 로고
    • Using feature construction to improve the performance of neural networks
    • Piramuthu S., Ravagan H., Show M.J. Using feature construction to improve the performance of neural networks. Management Science 1998, 44:416-430.
    • (1998) Management Science , vol.44 , pp. 416-430
    • Piramuthu, S.1    Ravagan, H.2    Show, M.J.3
  • 69
    • 19944422811 scopus 로고    scopus 로고
    • Using machine learning, neural networks and statistics to predict corporate bankruptcy
    • Pompe P., Feelders A. Using machine learning, neural networks and statistics to predict corporate bankruptcy. Microcomputers in Civil Engineering 1997, 12:267-276.
    • (1997) Microcomputers in Civil Engineering , vol.12 , pp. 267-276
    • Pompe, P.1    Feelders, A.2
  • 70
    • 84988828223 scopus 로고
    • Neural networks: a new tool for predicting thrift failures
    • Salchenberger L., Cinar E., Lash N. Neural networks: a new tool for predicting thrift failures. Decision Sciences 1992, 23:899-916.
    • (1992) Decision Sciences , vol.23 , pp. 899-916
    • Salchenberger, L.1    Cinar, E.2    Lash, N.3
  • 71
    • 0036776357 scopus 로고    scopus 로고
    • A genetic algorithm application in bankruptcy prediction modeling
    • Shin S., Lee Y. A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications 2003, 23:321-328.
    • (2003) Expert Systems with Applications , vol.23 , pp. 321-328
    • Shin, S.1    Lee, Y.2
  • 72
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: the case of bank failure predictions
    • Tam K., Kiang M. Managerial applications of neural networks: the case of bank failure predictions. Management Science 1992, 38:926-947.
    • (1992) Management Science , vol.38 , pp. 926-947
    • Tam, K.1    Kiang, M.2
  • 73
    • 80052826948 scopus 로고    scopus 로고
    • A study on using artificial neural networks to develop an early warning predictor for credit union financial distress with comparison to the probit model
    • Tan C., Dihardjo H. A study on using artificial neural networks to develop an early warning predictor for credit union financial distress with comparison to the probit model. Managerial Finance 2001, 27:56-77.
    • (2001) Managerial Finance , vol.27 , pp. 56-77
    • Tan, C.1    Dihardjo, H.2
  • 74
    • 1942423173 scopus 로고    scopus 로고
    • Genso-ews: a novel neural-fuzzy based early warning system for predicting bank failures
    • Tung W., Quek C., Cheng P. Genso-ews: a novel neural-fuzzy based early warning system for predicting bank failures. Neural Networks 2004, 17:567-587.
    • (2004) Neural Networks , vol.17 , pp. 567-587
    • Tung, W.1    Quek, C.2    Cheng, P.3
  • 75
    • 35248890355 scopus 로고    scopus 로고
    • Application of hlvq and g-prop neural networks to the problem of bankruptcy prediction, in: Application of HLVQ and G-Prop neural networks to the problem of bankruptcy prediction.
    • A. Vieira, P. Castillo, J. Merelo, Application of hlvq and g-prop neural networks to the problem of bankruptcy prediction, in: Application of HLVQ and G-Prop neural networks to the problem of bankruptcy prediction, 2003, pp. 655-652.
    • (2003) , pp. 655-652
    • Vieira, A.1    Castillo, P.2    Merelo, J.3
  • 76
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision application
    • West D., Dellana S., Qian J. Neural network ensemble strategies for financial decision application. Computers and Operations Research 2005, 32:2543-2559.
    • (2005) Computers and Operations Research , vol.32 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 77
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • Wu C., Tzeng G., Goo Y., Fang W. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications 2007, 32:397-408.
    • (2007) Expert Systems with Applications , vol.32 , pp. 397-408
    • Wu, C.1    Tzeng, G.2    Goo, Y.3    Fang, W.4
  • 78
    • 77952473153 scopus 로고    scopus 로고
    • Analysing company performance using templates
    • Yang Z., Harrison R.G. Analysing company performance using templates. Intelligent Data Analysis 2002, 6:3-15.
    • (2002) Intelligent Data Analysis , vol.6 , pp. 3-15
    • Yang, Z.1    Harrison, R.G.2
  • 80
    • 77952506668 scopus 로고    scopus 로고
    • A comparison of corporate failure models in Australia: hybrid neural networks, logit models and discriminant analysis, Working Paper, RMIT Business, School of Economics and Finance.
    • J. Yim, H. Mitchell, A comparison of corporate failure models in Australia: hybrid neural networks, logit models and discriminant analysis, Working Paper, RMIT Business, School of Economics and Finance, 2002.
    • (2002)
    • Yim, J.1    Mitchell, H.2
  • 81
    • 77952483503 scopus 로고    scopus 로고
    • A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis, Working Paper, Universidade Federal de Minas Gerais, Economics Department, Nova Economia.
    • J. Yim, H. Mitchell, A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis, Working Paper, Universidade Federal de Minas Gerais, Economics Department, Nova Economia, 2005.
    • (2005)
    • Yim, J.1    Mitchell, H.2
  • 83
    • 77952529661 scopus 로고
    • Changes in the financial structure of unsuccessful industrial corporations, Bulletin no. 51, University of Illinois, Bureau of Business Research.
    • A. Winakor, R.F. Smith, Changes in the financial structure of unsuccessful industrial corporations, Bulletin no. 51, University of Illinois, Bureau of Business Research, 1935.
    • (1935)
    • Winakor, A.1    Smith, R.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.