-
2
-
-
33845708953
-
-
Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Science 2006, 314, 1757
-
(2006)
Science
, vol.314
, pp. 1757
-
-
Bernevig, B.A.1
Hughes, T.L.2
Zhang, S.C.3
-
3
-
-
77955579666
-
-
Dang, W.; Peng, H.; Li, H.; Wang, P.; Liu, Z. F. Nano Lett. 2010, 10, 2870
-
(2010)
Nano Lett.
, vol.10
, pp. 2870
-
-
Dang, W.1
Peng, H.2
Li, H.3
Wang, P.4
Liu, Z.F.5
-
4
-
-
77953307023
-
-
Kong, D.; Dang, W.; Cha, J. J.; Li, H.; Meister, S.; Peng, H.; Liu, Z.; Cui, Y. Nano Lett. 2010, 10, 2245
-
(2010)
Nano Lett.
, vol.10
, pp. 2245
-
-
Kong, D.1
Dang, W.2
Cha, J.J.3
Li, H.4
Meister, S.5
Peng, H.6
Liu, Z.7
Cui, Y.8
-
5
-
-
77955565433
-
-
Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Nano Lett. 2010, 10, 3037
-
(2010)
Nano Lett.
, vol.10
, pp. 3037
-
-
Zuev, Y.M.1
Lee, J.S.2
Galloy, C.3
Park, H.4
Kim, P.5
-
6
-
-
74849102663
-
-
Kong, D.; Randel, J. C.; Peng, H.; Cha, J. J.; Meister, S.; Lai, K.; Chen, Y.; Shen, Z.-X.; Manoharan, H. C.; Cui, Y. Nano Lett. 2010, 10, 329
-
(2010)
Nano Lett.
, vol.10
, pp. 329
-
-
Kong, D.1
Randel, J.C.2
Peng, H.3
Cha, J.J.4
Meister, S.5
Lai, K.6
Chen, Y.7
Shen, Z.-X.8
Manoharan, H.C.9
Cui, Y.10
-
7
-
-
77955583809
-
-
Hong, S. S.; Kundhikanjana, K.; Cha, J. J.; Lai, K.; Kong, D.; Meister, S.; Kelly, M. A.; Shen, Z.-X.; Cui, Y. Nano Lett. 2010, 10, 3118
-
(2010)
Nano Lett.
, vol.10
, pp. 3118
-
-
Hong, S.S.1
Kundhikanjana, K.2
Cha, J.J.3
Lai, K.4
Kong, D.5
Meister, S.6
Kelly, M.A.7
Shen, Z.-X.8
Cui, Y.9
-
8
-
-
77957707668
-
-
Liu, H. W.; Yuan, H. T.; Fukui, N.; Zhang, L.; Jia, J. F.; Iwasa, Y.; Chen, M. W.; Hashizume, T.; Sakurai, T.; Xue, Q. K. Cryst. Growth Des. 2010, 10, 4491
-
(2010)
Cryst. Growth Des.
, vol.10
, pp. 4491
-
-
Liu, H.W.1
Yuan, H.T.2
Fukui, N.3
Zhang, L.4
Jia, J.F.5
Iwasa, Y.6
Chen, M.W.7
Hashizume, T.8
Sakurai, T.9
Xue, Q.K.10
-
9
-
-
77951046216
-
-
Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Nano Lett 2010, 10, 1209
-
(2010)
Nano Lett
, vol.10
, pp. 1209
-
-
Teweldebrhan, D.1
Goyal, V.2
Balandin, A.A.3
-
12
-
-
67650262991
-
-
Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Nat. Phys. 2009, 5, 398-402
-
(2009)
Nat. Phys.
, vol.5
, pp. 398-402
-
-
Xia, Y.1
Qian, D.2
Hsieh, D.3
Wray, L.4
Pal, A.5
Lin, H.6
Bansil, A.7
Grauer, D.8
Hor, Y.S.9
Cava, R.J.10
Hasan, M.Z.11
-
13
-
-
69349084799
-
-
Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Nature 2009, 460, 1101-1106
-
(2009)
Nature
, vol.460
, pp. 1101-1106
-
-
Hsieh, D.1
Xia, Y.2
Qian, D.3
Wray, L.4
Dil, J.H.5
Meier, F.6
Osterwalder, J.7
Patthey, L.8
Checkelsky, J.G.9
Ong, N.P.10
Fedorov, A.V.11
Lin, H.12
Bansil, A.13
Grauer, D.14
Hor, Y.S.15
Cava, R.J.16
Hasan, M.Z.17
-
14
-
-
77955267672
-
-
Zhang, Y.; He, K.; Chang, C. Z.; Song, C. L.; Wang, L. L.; Chen, X.; Jia, J. F.; Fang, Z.; Dai, X.; Shan, W. Y.; Shen, S. Q.; Niu, Q.; Qi, X. L.; Zhang, S. C.; Ma, X. C.; Xue, Q. K. Nat. Phys. 2010, 6, 584
-
(2010)
Nat. Phys.
, vol.6
, pp. 584
-
-
Zhang, Y.1
He, K.2
Chang, C.Z.3
Song, C.L.4
Wang, L.L.5
Chen, X.6
Jia, J.F.7
Fang, Z.8
Dai, X.9
Shan, W.Y.10
Shen, S.Q.11
Niu, Q.12
Qi, X.L.13
Zhang, S.C.14
Ma, X.C.15
Xue, Q.K.16
-
16
-
-
77954635804
-
-
Seo, J.; Roushan, P.; Beidenkopf, H.; Hor, Y. S.; Cava, R. J.; Yazdani, A. Nature 2010, 466, 343
-
(2010)
Nature
, vol.466
, pp. 343
-
-
Seo, J.1
Roushan, P.2
Beidenkopf, H.3
Hor, Y.S.4
Cava, R.J.5
Yazdani, A.6
-
17
-
-
77957582689
-
-
Hanaguri, T.; Igarashi, K.; Kawamura, M.; Takagi, H.; Sasagawa, T. Phys. Rev. B 2010, 82, 081305
-
(2010)
Phys. Rev. B
, vol.82
, pp. 081305
-
-
Hanaguri, T.1
Igarashi, K.2
Kawamura, M.3
Takagi, H.4
Sasagawa, T.5
-
18
-
-
67650260772
-
-
Zhang, H.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Nat. Phys. 2009, 5, 438
-
(2009)
Nat. Phys.
, vol.5
, pp. 438
-
-
Zhang, H.1
Liu, C.X.2
Qi, X.L.3
Dai, X.4
Fang, Z.5
Zhang, S.C.6
-
19
-
-
77955081319
-
-
Zhang, W.; Yu, R.; Zhang, H. J.; Dai, X.; Fang, Z. New J. Phys. 2010, 12, 065013
-
(2010)
New J. Phys.
, vol.12
, pp. 065013
-
-
Zhang, W.1
Yu, R.2
Zhang, H.J.3
Dai, X.4
Fang, Z.5
-
20
-
-
77954827578
-
-
Liu, C. X.; Zhang, H. J.; Yan, B.; Qi, X. L.; Frauenheim, T.; Dai, X.; Fang, Z.; Zhang, S. C. Phys. Rev. B 2010, 81, 041307(R)
-
(2010)
Phys. Rev. B
, vol.81
-
-
Liu, C.X.1
Zhang, H.J.2
Yan, B.3
Qi, X.L.4
Frauenheim, T.5
Dai, X.6
Fang, Z.7
Zhang, S.C.8
-
21
-
-
78650801604
-
-
Yazyev, O. V.; Moore, J. E.; Louie, S. G. Phys. Rev. Lett. 2010, 105, 266806
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 266806
-
-
Yazyev, O.V.1
Moore, J.E.2
Louie, S.G.3
-
22
-
-
0025446594
-
-
Blaha, P.; Schwarz, K.; Sorantin, P.; Trickey, S.B. Comput. Phys. Commun. 1990, 59, 399-415
-
(1990)
Comput. Phys. Commun.
, vol.59
, pp. 399-415
-
-
Blaha, P.1
Schwarz, K.2
Sorantin, P.3
Trickey, S.B.4
-
23
-
-
79955884790
-
-
max has been chosen as 8.0 and the angular expansion is made up by 10 spheric harmonic functions in the muffin tins.
-
max has been chosen as 8.0 and the angular expansion is made up by 10 spheric harmonic functions in the muffin tins.
-
-
-
-
24
-
-
4243720937
-
-
Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 245407
-
(2001)
Phys. Rev. B
, vol.63
, pp. 245407
-
-
Taylor, J.1
Guo, H.2
Wang, J.3
-
25
-
-
79951521753
-
-
Maassen, J.; Ji, W.; Hong, Guo Nano Lett. 2011, 11, 151
-
(2011)
Nano Lett.
, vol.11
, pp. 151
-
-
Maassen, J.1
Ji, W.2
Hong, G.3
-
26
-
-
0004033098
-
-
2nd ed.; Interscience Publishers: New York.
-
Wyckoff, R. W. G. Crystal Structures, 2nd ed.; Interscience Publishers: New York, 1964.
-
(1964)
Crystal Structures
-
-
Wyckoff, R.W.G.1
-
27
-
-
79955922941
-
-
For more details of the NEGF-DFT method used in the nanodcal tranpsort package, see ref 20; see also. In this work, we focus on equilibrium tranpsort property at zero external bias; hence NEGF is reduced to the usual equilibrium Green's functions.
-
For more details of the NEGF-DFT method used in the nanodcal tranpsort package, see ref 20; see also http://www.nanoacademic.ca. In this work, we focus on equilibrium tranpsort property at zero external bias; hence NEGF is reduced to the usual equilibrium Green's functions.
-
-
-
-
30
-
-
33747267421
-
-
Fernández-Seivane, L.; Oliveria, M. A.; Sanvito, S.; Ferrer, J. J. Phys: Condens. Matter 2006, 18, 7999
-
(2006)
J. Phys: Condens. Matter
, vol.18
, pp. 7999
-
-
Fernández-Seivane, L.1
Oliveria, M.A.2
Sanvito, S.3
Ferrer, J.4
-
32
-
-
0000461628
-
-
3, nanodcal (20, 22) gives a band gap 0.19 eV which is close to the 0.22 eV obtained by WIEN2k. These LSDA bulk values are smaller than the experimental gap of 0.35 eV; see Table 3 in:;;;,. From Figure 1 b, the 6 QL slab has a ''bulk band gap'' of 0.26 eV. We have also calculated 3QL and 2QL; their ''bulk gaps'' are 0.44 and 1.2 eV, respectively. The gaps thus shrink toward the bulk value as the slab becomes thicker
-
3, nanodcal (20, 22) gives a band gap 0.19 eV which is close to the 0.22 eV obtained by WIEN2k. These LSDA bulk values are smaller than the experimental gap of 0.35 eV; see Table 3 in: Black, J.; Conwell, E.M.; Seigle, L.; Spencer, C.W. J. Phys. Chem. Solids 1957, 2, 240. From Figure 1 b, the 6 QL slab has a ''bulk band gap'' of 0.26 eV. We have also calculated 3QL and 2QL; their ''bulk gaps'' are 0.44 and 1.2 eV, respectively. The gaps thus shrink toward the bulk value as the slab becomes thicker
-
(1957)
J. Phys. Chem. Solids
, vol.2
, pp. 240
-
-
Black, J.1
Conwell, E.M.2
Seigle, L.3
Spencer, C.W.4
-
33
-
-
79955891642
-
-
Preprint.
-
Chang, C. Z.; He, K.; Liu, M. H.; Zhang, Z. C.; Chen, X.; Wang, L. L.; Ma, X. C.; Wang, Y. Y.; Xue, Q. K. Preprint http://arxiv.org/abs/1012.5716.
-
-
-
Chang, C.Z.1
He, K.2
Liu, M.H.3
Zhang, Z.C.4
Chen, X.5
Wang, L.L.6
Ma, X.C.7
Wang, Y.Y.8
Xue, Q.K.9
-
34
-
-
79955884539
-
-
z of the slab is still identically zero. The nonvanishing average Φ on the two surfaces is an indication that even at the thickness of six QLs, there is still a very weak but nonzero interaction between the two surfaces across the slab. Investigating even thicker slabs by DFT requires prohibitively large computer resources beyond our ability.
-
z of the slab is still identically zero. The nonvanishing average Φ on the two surfaces is an indication that even at the thickness of six QLs, there is still a very weak but nonzero interaction between the two surfaces across the slab. Investigating even thicker slabs by DFT requires prohibitively large computer resources beyond our ability.
-
-
-
|