-
1
-
-
0031612370
-
Primary shortening-secondary lengthening. A new treatment concept for reconstruction of extensive soft tissue and bone injuries after 3rd degree open fracture and amputation of the lower leg
-
et al.
-
Betz AM, Hierner R, Baumgart R, et al. 1998. Primary shortening-secondary lengthening. A new treatment concept for reconstruction of extensive soft tissue and bone injuries after 3rd degree open fracture and amputation of the lower leg. Handchir Mikrochir Plast Chir 30: 30-39.
-
(1998)
Handchir Mikrochir Plast Chir
, vol.30
, pp. 30-39
-
-
Betz, A.M.1
Hierner, R.2
Baumgart, R.3
-
2
-
-
0034232670
-
Primary resective shortening followed by distraction osteogenesis for limb reconstruction: A comparison with simple lengthening
-
et al.
-
Meffert RH, Tis JE, Inoue N, et al. 2000. Primary resective shortening followed by distraction osteogenesis for limb reconstruction: a comparison with simple lengthening. J Orthop Res 18: 629-636.
-
(2000)
J Orthop Res
, vol.18
, pp. 629-636
-
-
Meffert, R.H.1
Tis, J.E.2
Inoue, N.3
-
3
-
-
0029071721
-
Management strategies for bone loss in tibial shaft fractures
-
Watson JT, Anders M, Moed BR., 1995. Management strategies for bone loss in tibial shaft fractures. Clin Orthop Relat Res 315: 138-152.
-
(1995)
Clin Orthop Relat Res
, vol.315
, pp. 138-152
-
-
Watson, J.T.1
Anders, M.2
Moed, B.R.3
-
4
-
-
0030830774
-
Callotaxis-osteogenesis by stretching-A conservative possibility for restoring leg length after post-traumatic primary tibial shortening
-
Mollenhoff G, Josten C, Muhr G., 1997. Callotaxis-osteogenesis by stretching-a conservative possibility for restoring leg length after post-traumatic primary tibial shortening ? Zentralbl Chir 122: 970-973.
-
(1997)
Zentralbl Chir
, vol.122
, pp. 970-973
-
-
Mollenhoff, G.1
Josten, C.2
Muhr, G.3
-
5
-
-
0027196036
-
Primary shortening followed by callus distraction for the treatment of a posttraumatic bone defect: Case report
-
Sales de Gauzy J, Vidal H, Cahuzac JP., 1993. Primary shortening followed by callus distraction for the treatment of a posttraumatic bone defect: case report. J Trauma 34: 461-463. (Pubitemid 23131350)
-
(1993)
Journal of Trauma
, vol.34
, Issue.3
, pp. 461-463
-
-
De Gauzy, J.S.1
Vidal, H.2
Cahuzac, J.-P.3
-
6
-
-
34447299383
-
The influence of soft tissue trauma on bone regeneration after acute limb shortening
-
DOI 10.1097/BLO.0b013e31804a5e12, PII 0000308620070700000032
-
Meffert RH, Jansen H, Frey SP, et al. 2007. The influence of soft tissue trauma on bone regeneration after acute limb shortening. Clin Orthop Relat Res 460: 202-209. (Pubitemid 47056499)
-
(2007)
Clinical Orthopaedics and Related Research
, Issue.460
, pp. 202-209
-
-
Meffert, R.H.1
Jansen, H.2
Frey, S.P.3
Raschke, M.J.4
Langer, M.5
-
7
-
-
0031152041
-
The significance of angiogenesis in guided bone regeneration: A case report of a rabbit experiment
-
Schmid J, Wallkamm B, Hammerle CH, et al. 1997. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin Oral Implants Res 8: 244-248. (Pubitemid 127688460)
-
(1997)
Clinical Oral Implants Research
, vol.8
, Issue.3
, pp. 244-248
-
-
Schmid, J.1
Wallkamm, B.2
Hammerle, C.H.F.3
Gogolewski, S.4
Lang, N.P.5
-
8
-
-
33947305450
-
Molecular aspects of fracture healing:Which are the important molecules?
-
DOI 10.1016/j.injury.2007.02.006, PII S0020138307000551
-
Tsiridis E, Upadhyay N, Giannoudis P., 2007. Molecular aspects of fracture healing: which are the important molecules ? Injury 38 (Suppl 1): S11-S25. (Pubitemid 46440926)
-
(2007)
Injury
, vol.38
, Issue.SUPPL. 1
-
-
Tsiridis, E.1
Upadhyay, N.2
Giannoudis, P.3
-
9
-
-
0033027858
-
VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation
-
DOI 10.1038/9467
-
Gerber HP, Vu TH, Ryan AM, et al. 1999. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5: 623-628. (Pubitemid 29289424)
-
(1999)
Nature Medicine
, vol.5
, Issue.6
, pp. 623-628
-
-
Gerber, H.-P.1
Vu, T.H.2
Ryan, A.M.3
Kowalski, J.4
Werb, Z.5
Ferrara, N.6
-
10
-
-
0037699954
-
The biology of VEGF and its receptors
-
DOI 10.1038/nm0603-669
-
Ferrara N, Gerber HP, LeCouter J., 2003. The biology of VEGF and its receptors. Nat Med 9: 669-676. (Pubitemid 36749215)
-
(2003)
Nature Medicine
, vol.9
, Issue.6
, pp. 669-676
-
-
Ferrara, N.1
Gerber, H.-P.2
LeCouter, J.3
-
11
-
-
0033636357
-
VEGF: An update on biological and therapeutic aspects
-
Ferrara N., 2000. VEGF: an update on biological and therapeutic aspects. Curr Opin Biotechnol 11: 617-624.
-
(2000)
Curr Opin Biotechnol
, vol.11
, pp. 617-624
-
-
Ferrara, N.1
-
12
-
-
0037162547
-
Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover
-
DOI 10.1073/pnas.152324099
-
Street J, Bao M, deGuzman L, et al. 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99: 9656-9661. (Pubitemid 34831103)
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.15
, pp. 9656-9661
-
-
Street, J.1
Bao, M.2
DeGuzman, L.3
Bunting, S.4
Peale Jr., F.V.5
Ferrara, N.6
Steinmetz, H.7
Hoeffel, J.8
Cleland, J.L.9
Daugherty, A.10
Van Bruggen, N.11
Redmond, H.P.12
Carano, R.A.D.13
Filvaroff, E.H.14
-
13
-
-
0344289637
-
Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues
-
DOI 10.1002/jgm.392
-
Tarkka T, Sipola A, Jamsa T, et al. 2003. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues. J Gene Med 5: 560-566. (Pubitemid 40310399)
-
(2003)
Journal of Gene Medicine
, vol.5
, Issue.7
, pp. 560-566
-
-
Tarkka, T.1
Sipola, A.2
Jamsa, T.3
Soini, Y.4
Yla-Herttuala, S.5
Tuukkanen, J.6
Hautala, T.7
-
14
-
-
27444447463
-
165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects
-
DOI 10.1359/JBMR.050701
-
Geiger F, Bertram H, Berger I, et al. 2005. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res 20: 2028-2035. (Pubitemid 41532788)
-
(2005)
Journal of Bone and Mineral Research
, vol.20
, Issue.11
, pp. 2028-2035
-
-
Geiger, F.1
Bertram, H.2
Berger, I.3
Lorenz, H.4
Wall, O.5
Eckhardt, C.6
Simank, H.-G.7
Richter, W.8
-
15
-
-
34548543843
-
VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute
-
DOI 10.1016/j.bone.2007.06.018, PII S8756328207005480
-
Geiger F, Lorenz H, Xu W, et al. 2007. VEGF producing bone marrow stromal cells (BMSC) enhance vascularization and resorption of a natural coral bone substitute. Bone 41: 516-522. (Pubitemid 47385443)
-
(2007)
Bone
, vol.41
, Issue.4
, pp. 516-522
-
-
Geiger, F.1
Lorenz, H.2
Xu, W.3
Szalay, K.4
Kasten, P.5
Claes, L.6
Augat, P.7
Richter, W.8
-
16
-
-
23944489375
-
VEGF-activated angiogenesis during bone regeneration
-
DOI 10.1016/j.joms.2005.05.303, PII S0278239105008748
-
Kleinheinz J, Stratmann U, Joos U, et al. 2005. VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg 63: 1310-1316. (Pubitemid 41191257)
-
(2005)
Journal of Oral and Maxillofacial Surgery
, vol.63
, Issue.9
, pp. 1310-1316
-
-
Kleinheinz, J.1
Stratmann, U.2
Joos, U.3
Wiesmann, H.-P.4
-
17
-
-
58149271034
-
Effect of cell-based VEGF gene therapy on healing of a segmental bone defect
-
et al.
-
Li R, Stewart DJ, von Schroeder HP, et al. 2009. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. J Orthop Res 27: 8-14.
-
(2009)
J Orthop Res
, vol.27
, pp. 8-14
-
-
Li, R.1
Stewart, D.J.2
Von Schroeder, H.P.3
-
18
-
-
27444446737
-
VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis
-
DOI 10.1359/JBMR.050708
-
Peng H, Usas A, Olshanski A, et al. 2005. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 20: 2017-2027. (Pubitemid 41532787)
-
(2005)
Journal of Bone and Mineral Research
, vol.20
, Issue.11
, pp. 2017-2027
-
-
Peng, H.1
Usas, A.2
Olshanski, A.3
Ho, A.M.4
Gearhart, B.5
Cooper, G.M.6
Huard, J.7
-
19
-
-
68949163251
-
Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF
-
et al.
-
Schipani E, Maes C, Carmeliet G, et al. 2009. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24: 1347-1353.
-
(2009)
J Bone Miner Res
, vol.24
, pp. 1347-1353
-
-
Schipani, E.1
Maes, C.2
Carmeliet, G.3
-
20
-
-
0041322760
-
Temporospatial expression of vascular endothelial growth factor and basic fibroblast growth factor during mandibular distraction osteogenesis
-
DOI 10.1016/S1010-5182(03)00034-9
-
Hu J, Zou S, Li J, et al. 2003. Temporospatial expression of vascular endothelial growth factor and basic fibroblast growth factor during mandibular distraction osteogenesis. J Craniomaxillofac Surg 31: 238-243. (Pubitemid 37081093)
-
(2003)
Journal of Cranio-Maxillofacial Surgery
, vol.31
, Issue.4
, pp. 238-243
-
-
Hu, J.1
Zou, S.2
Li, J.3
Chen, Y.4
Wang, D.5
Gao, Z.6
-
21
-
-
33646177289
-
Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1α/vascular endothelial growth factor system
-
DOI 10.1002/jor.20076
-
Mori S, Akagi M, Kikuyama A, et al. 2006. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system. J Orthop Res 24: 653-663. (Pubitemid 43804959)
-
(2006)
Journal of Orthopaedic Research
, vol.24
, Issue.4
, pp. 653-663
-
-
Mori, S.1
Akagi, M.2
Kikuyama, A.3
Yasuda, Y.4
Hamanishi, C.5
-
22
-
-
63249126312
-
Role of hypoxia inducible factor-1 alpha pathway in bone regeneration
-
et al.
-
Wan C, Gilbert SR, Wang Y, et al. 2008. Role of hypoxia inducible factor-1 alpha pathway in bone regeneration. J Musculoskelet Neuronal Interact 8: 323-324.
-
(2008)
J Musculoskelet Neuronal Interact
, vol.8
, pp. 323-324
-
-
Wan, C.1
Gilbert, S.R.2
Wang, Y.3
-
23
-
-
42449132519
-
Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling
-
DOI 10.1359/jbmr.080103
-
Jacobsen KA, Al-Aql ZS, Wan C, et al. 2008. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res 23: 596-609. (Pubitemid 351575014)
-
(2008)
Journal of Bone and Mineral Research
, vol.23
, Issue.5
, pp. 596-609
-
-
Jacobsen, K.A.1
Al-Aql, Z.S.2
Wan, C.3
Fitch, J.L.4
Stapleton, S.N.5
Mason, Z.D.6
Cole, R.M.7
Gilbert, S.R.8
Clemens, T.L.9
Morgan, E.F.10
Einhorn, T.A.11
Gerstenfeld, L.C.12
-
24
-
-
69249215217
-
Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis
-
Zheng LW, Ma L, Cheung LK., 2009. Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg 37: 405-411.
-
(2009)
J Craniomaxillofac Surg
, vol.37
, pp. 405-411
-
-
Zheng, L.W.1
Ma, L.2
Cheung, L.K.3
-
25
-
-
27244445330
-
Recombinant human vascular endothelial growth factor enhaces bone healing in an experimental nonunion model
-
DOI 10.1302/0301-620X.87B10.16226
-
Eckardt H, Ding M, Lind M, et al. 2005. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg Br 87: 1434-1438. (Pubitemid 41511813)
-
(2005)
Journal of Bone and Joint Surgery - Series B
, vol.87
, Issue.10
, pp. 1434-1438
-
-
Eckardt, H.1
Ding, M.2
Lind, M.3
Hansen, E.S.4
Christensen, K.S.5
Hvid, I.6
-
26
-
-
0029058803
-
Possible orthopaedic applications of gene therapy
-
Evans CH, Robbins PD., 1995. Possible orthopaedic applications of gene therapy. Bone Joint Surg Am 77: 1103-1114.
-
(1995)
Bone Joint Surg Am
, vol.77
, pp. 1103-1114
-
-
Evans, C.H.1
Robbins, P.D.2
-
27
-
-
77954667182
-
Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model
-
et al.
-
Kleinheinz J, Jung S, Wermker K, et al. 2010. Release kinetics of VEGF165 from a collagen matrix and structural matrix changes in a circulation model. Head Face Med 6: 17.
-
(2010)
Head Face Med
, vol.6
, pp. 17
-
-
Kleinheinz, J.1
Jung, S.2
Wermker, K.3
|