메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 663-689

Efficient structure learning of Bayesian networks using constraints

Author keywords

Bayesian networks; Branch and bound technique; Properties of decomposable scores; Structural constraints; Structure learning

Indexed keywords

AKAIKE INFORMATION CRITERION; BAYESIAN INFORMATION CRITERION; BOUND ALGORITHMS; BRANCH-AND-BOUND TECHNIQUE; DATA SETS; DIRICHLET; DYNAMIC BAYESIAN NETWORK; GLOBAL OPTIMALITY; LEARNING BAYESIAN NETWORKS; MEMORY COST; MINIMUM DESCRIPTION LENGTH; PROPERTIES OF DECOMPOSABLE SCORES; SCORE FUNCTION; STATE-OF-THE-ART METHODS; STRUCTURAL CONSTRAINTS; STRUCTURE LEARNING;

EID: 79955857786     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (247)

References (25)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 6
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identiication with greedy search
    • D. M. Chickering. Optimal structure identiication with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 8
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 10
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 13
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto and K. Sood. Exact Bayesian Structure Discovery in Bayesian Networks. Journal of Machine Learning Research, 5:549-573, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 14
    • 76749103392 scopus 로고    scopus 로고
    • Optimal search on clustered structural constraint for learning Bayesian network structure
    • K. Kojima, E. Perrier, S. Imoto, and S. Miyano. Optimal search on clustered structural constraint for learning Bayesian network structure. Journal of Machine Learning Research, 11:285-310, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 285-310
    • Kojima, K.1    Perrier, E.2    Imoto, S.3    Miyano, S.4
  • 15
    • 13444275705 scopus 로고    scopus 로고
    • Finding optimal gene networks using biological constraints
    • S. Ott and S. Miyano. Finding optimal gene networks using biological constraints. Genome Informatics, 14:124-133, 2003.
    • (2003) Genome Informatics , vol.14 , pp. 124-133
    • Ott, S.1    Miyano, S.2
  • 17
    • 31844434495 scopus 로고    scopus 로고
    • Discriminative versus generative parameter and structure learning of bayesian network classifiers
    • DOI 10.1145/1102351.1102434, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
    • F. Pernkopf and J. Bilmes. Discriminative versus generative parameter and structure learning of Bayesian network classiiers. In Proceedings of the 22nd International Conference on Machine Learning, ICML'05, pages 657-664, New York, NY, USA, 2005. ACM. (Pubitemid 43183390)
    • (2005) ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning , pp. 657-664
    • Pernkopf, F.1    Bilmes, J.2
  • 19
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 23
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique
    • J. Suzuki. Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique. In Proceedings of the 13th International Conference on Machine Learning, ICML 96, pages 462-470, 1996.
    • (1996) Proceedings of the 13th International Conference on Machine Learning, ICML 96 , pp. 462-470
    • Suzuki, J.1
  • 25
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • I. Tsamardinos, L. E. Brown, and C. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006. (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.