-
1
-
-
0016355478
-
A new look at the statistical model identification
-
H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716-723, 1974.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
6
-
-
0042967741
-
Optimal structure identiication with greedy search
-
D. M. Chickering. Optimal structure identiication with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
7
-
-
29344467995
-
Large-sample learning of Bayesian networks is np-hard
-
San Francisco, CA. Morgan Kaufmann
-
D. M. Chickering, C. Meek, and D. Heckerman. Large-sample learning of Bayesian networks is np-hard. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, UAI'03, pages 124-13, San Francisco, CA, 2003. Morgan Kaufmann.
-
(2003)
Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, UAI'03
, pp. 124-113
-
-
Chickering, D.M.1
Meek, C.2
Heckerman, D.3
-
8
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
9
-
-
71149111418
-
Structure learning of Bayesian networks using constraints. in
-
Montreal. Omnipress
-
C. P. de Campos, Z. Zeng, and Q. Ji. Structure learning of Bayesian networks using constraints. In Proceedings of the 26th International Conference on Machine Learning, ICML'09, pages 113-120, Montreal, 2009. Omnipress.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning, ICML'09
, pp. 113-120
-
-
De Campos, C.P.1
Zeng, Z.2
Ji, Q.3
-
10
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
11
-
-
84862272478
-
Learning Bayesian Network Structure using LP Relaxations
-
T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian Network Structure using LP Relaxations. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, AISTATS'10, pages 358-365, 2010.
-
(2010)
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, AISTATS'10
, pp. 358-365
-
-
Jaakkola, T.1
Sontag, D.2
Globerson, A.3
Meila, M.4
-
13
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
M. Koivisto and K. Sood. Exact Bayesian Structure Discovery in Bayesian Networks. Journal of Machine Learning Research, 5:549-573, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
14
-
-
76749103392
-
Optimal search on clustered structural constraint for learning Bayesian network structure
-
K. Kojima, E. Perrier, S. Imoto, and S. Miyano. Optimal search on clustered structural constraint for learning Bayesian network structure. Journal of Machine Learning Research, 11:285-310, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 285-310
-
-
Kojima, K.1
Perrier, E.2
Imoto, S.3
Miyano, S.4
-
15
-
-
13444275705
-
Finding optimal gene networks using biological constraints
-
S. Ott and S. Miyano. Finding optimal gene networks using biological constraints. Genome Informatics, 14:124-133, 2003.
-
(2003)
Genome Informatics
, vol.14
, pp. 124-133
-
-
Ott, S.1
Miyano, S.2
-
16
-
-
80051621069
-
Exact structure discovery in Bayesian networks with less space
-
Arlington, Virginia, United States. AUAI Press
-
P. Parviainen and M. Koivisto. Exact structure discovery in Bayesian networks with less space. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI'09, pages 436-443, Arlington, Virginia, United States, 2009. AUAI Press.
-
(2009)
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI'09
, pp. 436-443
-
-
Parviainen, P.1
Koivisto, M.2
-
17
-
-
31844434495
-
Discriminative versus generative parameter and structure learning of bayesian network classifiers
-
DOI 10.1145/1102351.1102434, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
-
F. Pernkopf and J. Bilmes. Discriminative versus generative parameter and structure learning of Bayesian network classiiers. In Proceedings of the 22nd International Conference on Machine Learning, ICML'05, pages 657-664, New York, NY, USA, 2005. ACM. (Pubitemid 43183390)
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 657-664
-
-
Pernkopf, F.1
Bilmes, J.2
-
19
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978.
-
(1978)
The Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.1
-
20
-
-
80053201441
-
A simple approach for finding the globally optimal Bayesian network structure
-
Arlington, Virginia. AUAI Press
-
T. Silander and P. Myllymaki. A simple approach for finding the globally optimal Bayesian network structure. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI'06, pages 445-452, Arlington, Virginia, 2006. AUAI Press.
-
(2006)
Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI'06
, pp. 445-452
-
-
Silander, T.1
Myllymaki, P.2
-
22
-
-
0003614273
-
-
Springer-Verlag, New York
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Springer-Verlag, New York, 1993 .
-
(1993)
Causation, Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
23
-
-
0008564212
-
Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique
-
J. Suzuki. Learning Bayesian belief networks based on the minimum description length principle: An efficient algorithm using the B&B technique. In Proceedings of the 13th International Conference on Machine Learning, ICML 96, pages 462-470, 1996.
-
(1996)
Proceedings of the 13th International Conference on Machine Learning, ICML 96
, pp. 462-470
-
-
Suzuki, J.1
-
25
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
DOI 10.1007/s10994-006-6889-7
-
I. Tsamardinos, L. E. Brown, and C. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006. (Pubitemid 44451193)
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|