메뉴 건너뛰기




Volumn 12, Issue 3, 2011, Pages 230-244

Biological feature validation of estimated gene interaction networks from microarray data: A case study on MYC in lymphomas

Author keywords

Biological knowledge; Comparing networks; Gene expression; Interaction networks

Indexed keywords

ARTICLE; BIOLOGY; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENE REGULATORY NETWORK; GENETIC DATABASE; GENETICS; HUMAN; LYMPHOMA; ONCOGENE MYC; SYSTEMS BIOLOGY; VALIDATION STUDY;

EID: 79955781020     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbr007     Document Type: Article
Times cited : (3)

References (35)
  • 1
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Article 32
    • Schäfer J, Strimmer K. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat Appl Genet Mol Biol 2005;4. Article 32.
    • (2005) Stat Appl Genet Mol Biol , pp. 4
    • Schäfer, J.1    Strimmer, K.2
  • 2
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2007;9: 432-41.
    • (2007) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • Banerjee O, Ghaoui LE, d'Aspremont A. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J Machine Learn Res 2008;9: 485-516.
    • (2008) J Machine Learn Res , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    d'Aspremont, A.3
  • 4
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high dimensional acyclic graphs with the PC algorithm
    • Kalisch M, Bühlmann P. Estimating high dimensional acyclic graphs with the PC algorithm. J Machine Learn Res 2007; 8:613-36.
    • (2007) J Machine Learn Res , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 5
    • 77952135179 scopus 로고    scopus 로고
    • Gene association networks from microarray data using a regularized estimation of partial correlation based on PLS regression
    • Tenenhaus A, Guillemot V, Gidrol X, et al. Gene association networks from microarray data using a regularized estimation of partial correlation based on PLS regression. IEEE/sACMTrans Comput Biol Bioinform 2010;7:251-62.
    • (2010) IEEE/ACMTrans Comput Biol Bioinform , vol.7 , pp. 251-262
    • Tenenhaus, A.1    Guillemot, V.2    Gidrol, X.3
  • 6
    • 77952516611 scopus 로고    scopus 로고
    • Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm
    • Wang M, Augusto Benedito V, Xuechun Zhao P, et al. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm. Mol Biosyst 2010;6: 988-98.
    • (2010) Mol Biosyst , vol.6 , pp. 988-998
    • Wang, M.1    Augusto Benedito, V.2    Xuechun Zhao, P.3
  • 7
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Comput Biol 2000;7: 601-20.
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3
  • 8
    • 73149097219 scopus 로고    scopus 로고
    • Regularized estimation of large-scale gene association networks using graphical Gaussian models
    • Krämer N, Schäfer J, Boulesteix AL. Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics 2009;10:384.
    • (2009) BMC Bioinformatics , vol.10 , pp. 384
    • Krämer, N.1    Schäfer, J.2    Boulesteix, A.L.3
  • 9
    • 79955780098 scopus 로고    scopus 로고
    • Validation of gene regulatory networks
    • Dec 22 [Epub ahead of print 22 December 2010]
    • Dougherty ER. Validation of gene regulatory networks. Sci Inf Brief Bioinform 2010. Dec 22 [Epub ahead of print 22 December 2010].
    • (2010) Sci Inf Brief Bioinform
    • Dougherty, E.R.1
  • 10
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso K, Margolin AA, Stolovitzky G, et al. Reverse engineering of regulatory networks in human B cells. Nature Genetics 2005;37:382-90.
    • (2005) Nature Genetics , vol.37 , pp. 382-390
    • Basso, K.1    Margolin, A.A.2    Stolovitzky, G.3
  • 11
    • 33744960411 scopus 로고    scopus 로고
    • A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling
    • Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl. J Med 2006;354:2419-30.
    • (2006) N Engl. J Med , vol.354 , pp. 2419-2430
    • Hummel, M.1    Bentink, S.2    Berger, H.3
  • 12
    • 36248989626 scopus 로고    scopus 로고
    • Theory and limitations of genetic network inference from microarray data
    • Magolin AA, Califano A. Theory and limitations of genetic network inference from microarray data. Ann NY Acad Sci 2007;1115:51-72.
    • (2007) Ann NY Acad Sci , vol.1115 , pp. 51-72
    • Magolin, A.A.1    Califano, A.2
  • 13
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Ann Statistics 2006; 34:1436-62.
    • (2006) Ann Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 14
    • 0003798347 scopus 로고
    • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
    • Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan San Francisco: Kaufmann Publishers, 1988.
    • (1988) Morgan San Francisco: Kaufmann Publishers
    • Pearl, J.1
  • 15
    • 77950544798 scopus 로고    scopus 로고
    • A statistical framework for differential network analysis from microarray data
    • Gill R, Datta S, Datta S. A statistical framework for differential network analysis from microarray data. BMC Bioinformatics 2010;11:95.
    • (2010) BMC Bioinformatics , vol.11 , pp. 95
    • Gill, R.1    Datta, S.2    Datta, S.3
  • 16
    • 21044446187 scopus 로고    scopus 로고
    • Finding disease specific alterations in the co-expression of genes
    • Kostka D, Spang R. Finding disease specific alterations in the co-expression of genes. Bioinformatics 2004;20(Suppl 1): i194-9.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Kostka, D.1    Spang, R.2
  • 17
    • 28944444652 scopus 로고    scopus 로고
    • Differential coexpression analysis using microarray data and its application to human cancer
    • Choi JK, Yu U, Yoo OJ, et al. Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 2005;21:4348-55.
    • (2005) Bioinformatics , vol.21 , pp. 4348-4355
    • Choi, J.K.1    Yu, U.2    Yoo, O.J.3
  • 18
    • 70449358722 scopus 로고    scopus 로고
    • A methodology for the analysis of differential coexpression across the human lifespan
    • Gillis J, Pavlidis P. A methodology for the analysis of differential coexpression across the human lifespan. BMC Bioinformatics 2009;10:306.
    • (2009) BMC Bioinformatics , vol.10 , pp. 306
    • Gillis, J.1    Pavlidis, P.2
  • 20
    • 0035839844 scopus 로고    scopus 로고
    • Translocations involving c-myc and c-myc function
    • Boxer LM, Dang CV. Translocations involving c-myc and c-myc function. Oncogene 2001;20:5595-610.
    • (2001) Oncogene , vol.20 , pp. 5595-5610
    • Boxer, L.M.1    Dang, C.V.2
  • 21
    • 33747893961 scopus 로고    scopus 로고
    • Myc translocations in B cell and plasma cell neoplasms
    • Janz S. Myc translocations in B cell and plasma cell neoplasms. DNA Repair 2006;5:1213-24.
    • (2006) DNA Repair , vol.5 , pp. 1213-1224
    • Janz, S.1
  • 22
    • 77954019248 scopus 로고    scopus 로고
    • Ontologies for bioinformatics
    • Schuurman N, Leszczynski A. Ontologies for bioinformatics. BBI 2008;2:187-200.
    • (2008) BBI , vol.2 , pp. 187-200
    • Schuurman, N.1    Leszczynski, A.2
  • 23
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. PNAS 2005; 102:15545-50.
    • (2005) PNAS , vol.102 , pp. 15545-15550
    • Subramanian, A.1    Tamayo, P.2    Mootha, V.K.3
  • 24
    • 39149099505 scopus 로고    scopus 로고
    • Multiple testing on the directed acyclic graph of gene ontology
    • Goeman JJ, Mansmann U. Multiple testing on the directed acyclic graph of gene ontology. Bioinformatics 2008;24: 537-44.
    • (2008) Bioinformatics , vol.24 , pp. 537-544
    • Goeman, J.J.1    Mansmann, U.2
  • 25
    • 79955785187 scopus 로고    scopus 로고
    • Literature-aided interpretation of gene expression data with the weighted global test
    • [Epub ahead of print 9 February 2011]
    • Jelier R, Goeman JJ, Hettne KM, et al. Literature-aided interpretation of gene expression data with the weighted global test. Brief Bioinform 2010. [Epub ahead of print 9 February 2011].
    • (2010) Brief Bioinform
    • Jelier, R.1    Goeman, J.J.2    Hettne, K.M.3
  • 26
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder H, Schumacher M. Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics 2009;10:18.
    • (2009) BMC Bioinformatics , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 27
    • 78650930357 scopus 로고    scopus 로고
    • Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast
    • Miller C, Schwalb B, Maier K, et al. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol 2011;7:458.
    • (2011) Mol Syst Biol , vol.7 , pp. 458
    • Miller, C.1    Schwalb, B.2    Maier, K.3
  • 28
    • 27844547121 scopus 로고    scopus 로고
    • Bcr is a negative regulator of the Wnt signalling pathway
    • Ress A, Moelling K. Bcr is a negative regulator of the Wnt signalling pathway. EMBO Rep 2005;6:1095-100.
    • (2005) EMBO Rep , vol.6 , pp. 1095-1100
    • Ress, A.1    Moelling, K.2
  • 29
    • 0345832338 scopus 로고    scopus 로고
    • A global test for groups of genes: testing association with a clinical outcome
    • Goeman JJ, van de Geer SA, de Kort F, et al. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 2004;20:93-9.
    • (2004) Bioinformatics , vol.20 , pp. 93-99
    • Goeman, J.J.1    van de Geer, S.A.2    de Kort, F.3
  • 30
    • 18344391432 scopus 로고    scopus 로고
    • Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex
    • Zheng N, Schulman BA, Song L, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 2002;416:703-9.
    • (2002) Nature , vol.416 , pp. 703-709
    • Zheng, N.1    Schulman, B.A.2    Song, L.3
  • 31
    • 0034053069 scopus 로고    scopus 로고
    • Wnt signaling in oncogenesis and embryogenesis- a look outside the nucleus
    • Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis- a look outside the nucleus. Science 2000;287: 1606-9.
    • (2000) Science , vol.287 , pp. 1606-1609
    • Peifer, M.1    Polakis, P.2
  • 32
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modelling: the two cultures
    • Breiman L. Statistical modelling: the two cultures. Stat Sci 2001;16:199-215.
    • (2001) Stat Sci , vol.16 , pp. 199-215
    • Breiman, L.1
  • 33
    • 0003409078 scopus 로고
    • Computer Intensive Statistical Methods:Validation, Model Selection
    • New York: Chapman & Hall
    • Hjorth JSU. Computer Intensive Statistical Methods:Validation, Model Selection, and Bootstrap. New York: Chapman & Hall, 1994.
    • (1994) and Bootstrap
    • Hjorth, J.S.U.1
  • 34
    • 38949164506 scopus 로고    scopus 로고
    • Genes and (common) pathways underlying drug addiction
    • Li CY, Mao M, Wei L. Genes and (common) pathways underlying drug addiction. PLoS Comput Biol 2008;4:e2.
    • (2008) PLoS Comput Biol , vol.4
    • Li, C.Y.1    Mao, M.2    Wei, L.3
  • 35
    • 33745626459 scopus 로고    scopus 로고
    • Improved scoring of functional groups from gene expression data by decorrelating GO graph structure
    • Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006;22: 1600-7.
    • (2006) Bioinformatics , vol.22 , pp. 1600-1607
    • Alexa, A.1    Rahnenführer, J.2    Lengauer, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.