메뉴 건너뛰기




Volumn 38, Issue 2, 2011, Pages 342-358

On the Flexibility of Metropolis-Hastings Acceptance Probabilities in Auxiliary Variable Proposal Generation

Author keywords

Acceptance probabilities; Auxiliary variables; Markov chain Monte Carlo; Metropolis Hastings algorithms

Indexed keywords


EID: 79955773878     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2010.00709.x     Document Type: Article
Times cited : (24)

References (33)
  • 1
    • 4344653003 scopus 로고    scopus 로고
    • Improving the acceptance rate of reversible jump MCMC proposals
    • Al-Awadhi, F., Hurn, M. & Jennison, C. (2004). Improving the acceptance rate of reversible jump MCMC proposals. Statist. Probab. Lett. 69, 189-198.
    • (2004) Statist. Probab. Lett. , vol.69 , pp. 189-198
    • Al-Awadhi, F.1    Hurn, M.2    Jennison, C.3
  • 2
    • 60149103563 scopus 로고    scopus 로고
    • The pseudo-marginal approach for efficient Monte Carlo computations
    • Andrieu, C. & Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Statist. 2, 697-725.
    • (2009) Ann. Statist. , vol.2 , pp. 697-725
    • Andrieu, C.1    Roberts, G.O.2
  • 3
    • 77953523599 scopus 로고    scopus 로고
    • Particle Markov chain Monte Carlo methods
    • (Stat. Methodol.)
    • Andrieu, C., Doucet, A. & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B (Stat. Methodol.) 72, 269-342.
    • (2010) J. Roy. Statist. Soc. Ser. B , vol.72 , pp. 269-342
    • Andrieu, C.1    Doucet, A.2    Holenstein, R.3
  • 4
    • 0043210659 scopus 로고    scopus 로고
    • Estimation of population growth or decline in genetically monitored populations
    • Beaumont, M. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics 164, 1139-1160.
    • (2003) Genetics , vol.164 , pp. 1139-1160
    • Beaumont, M.1
  • 5
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 36, 192-236.
    • (1974) J. Roy. Statist. Soc. Ser. B Stat. Methodol. , vol.36 , pp. 192-236
    • Besag, J.1
  • 6
    • 0040836224 scopus 로고
    • Comments on representations of knowledge in complex systems by U. Grenander and M. I. Miller
    • Besag, J. (1994). Comments on representations of knowledge in complex systems by U. Grenander and M. I. Miller. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 56, 591-592.
    • (1994) J. Roy. Statist. Soc. Ser. B Stat. Methodol. , vol.56 , pp. 591-592
    • Besag, J.1
  • 8
    • 33845221523 scopus 로고
    • On conditional and intrinsic autoregressions
    • Besag, J. & Kooperberg, C. (1995). On conditional and intrinsic autoregressions. Biometrika 82, 733-746.
    • (1995) Biometrika , vol.82 , pp. 733-746
    • Besag, J.1    Kooperberg, C.2
  • 9
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions
    • Brooks, S., Giudici, P. & Roberts, G. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 65, 3-39.
    • (2003) J. Roy. Statist. Soc. Ser. B Stat. Methodol. , vol.65 , pp. 3-39
    • Brooks, S.1    Giudici, P.2    Roberts, G.3
  • 10
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
    • Damien, P., Wakefield, J. & Walker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. J. Roy. Statist. Soc. Ser. B Stat. Methodol. 61, 331-344.
    • (1999) J. Roy. Statist. Soc. Ser. B Stat. Methodol. , vol.61 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 11
    • 0001440863 scopus 로고
    • Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm
    • Edwards, R. G. & Sokal, A. D. (1988). Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D 38, 2009-2012.
    • (1988) Phys. Rev. D , vol.38 , pp. 2009-2012
    • Edwards, R.G.1    Sokal, A.D.2
  • 12
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Gelman, A., Gilks, W. R. & Roberts, G. O. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7, 110-120.
    • (1997) Ann. Appl. Probab. , vol.7 , pp. 110-120
    • Gelman, A.1    Gilks, W.R.2    Roberts, G.O.3
  • 14
    • 0042908796 scopus 로고    scopus 로고
    • Delayed rejection in reversible jump Metropolis-Hastings
    • Green, P. & Mira, A. (2001). Delayed rejection in reversible jump Metropolis-Hastings. Biometrika 88, 1035-1053.
    • (2001) Biometrika , vol.88 , pp. 1035-1053
    • Green, P.1    Mira, A.2
  • 15
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 16
    • 46749119673 scopus 로고    scopus 로고
    • Re-considering the variance parameterization in multiple precision models
    • He, Y., Hodges, J. & Carlin, B. (2007). Re-considering the variance parameterization in multiple precision models. Bayesian Anal. 2, 529-556.
    • (2007) Bayesian Anal. , vol.2 , pp. 529-556
    • He, Y.1    Hodges, J.2    Carlin, B.3
  • 17
    • 0032398552 scopus 로고    scopus 로고
    • Auxiliary variable methods for Markov chain Monte Carlo with applications
    • Higdon, D. (1998). Auxiliary variable methods for Markov chain Monte Carlo with applications. J. Amer. Statist. Assoc. 93, 585-595.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 585-595
    • Higdon, D.1
  • 18
    • 79955751572 scopus 로고    scopus 로고
    • Mode jumping in MCMC: adapting proposals to the local environment. Talk at Conference to Honour Allan Seheult, Durham, March 2007. Available at: (accessed July 10, 2010).
    • Jennison, C. & Sharp, R. (2007). Mode jumping in MCMC: adapting proposals to the local environment. Talk at Conference to Honour Allan Seheult, Durham, March 2007. Available at: (accessed July 10, 2010).
    • (2007)
    • Jennison, C.1    Sharp, R.2
  • 19
    • 0036900109 scopus 로고    scopus 로고
    • On block updating in Markov random field models for disease mapping
    • Knorr-Held, L. & Rue, H. (2002). On block updating in Markov random field models for disease mapping. Scand. J. Statist. 29, 597-614.
    • (2002) Scand. J. Statist. , vol.29 , pp. 597-614
    • Knorr-Held, L.1    Rue, H.2
  • 20
    • 0442309554 scopus 로고    scopus 로고
    • The multiple-try method and local optimization in Metropolis sampling
    • Liu, J., Liang, F. & Wong, W. (2000). The multiple-try method and local optimization in Metropolis sampling. J. Amer. Statist. Assoc. 95, 121-134.
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 121-134
    • Liu, J.1    Liang, F.2    Wong, W.3
  • 22
    • 84891435216 scopus 로고    scopus 로고
    • On Metropolis-Hastings algorithms with delayed rejection
    • Mira, A. (2001). On Metropolis-Hastings algorithms with delayed rejection. Metron, 59, 231-241.
    • (2001) Metron , vol.59 , pp. 231-241
    • Mira, A.1
  • 23
    • 33745612435 scopus 로고    scopus 로고
    • An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants
    • Møller, J., Pettitt, A., Reeves, R. & Berthelsen, K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika 93, 451-458.
    • (2006) Biometrika , vol.93 , pp. 451-458
    • Møller, J.1    Pettitt, A.2    Reeves, R.3    Berthelsen, K.4
  • 25
    • 0000273048 scopus 로고    scopus 로고
    • Annealing importance sampling
    • AUAI Press, Arlington, Virginia.
    • Neal, R. M. (2001). Annealing importance sampling. Statist. Comput. 2, 125-139. AUAI Press, Arlington, Virginia.
    • (2001) Statist. Comput. , vol.2 , pp. 125-139
    • Neal, R.M.1
  • 26
    • 0015730787 scopus 로고
    • Optimum Monte-Carlo sampling using Markov chains
    • Peskun, P. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika 60, 607-612.
    • (1973) Biometrika , vol.60 , pp. 607-612
    • Peskun, P.1
  • 28
    • 85132364916 scopus 로고    scopus 로고
    • Exponential convergence of Langevin distributions and their discrete approximations
    • Roberts, G. & Tweedie, R. (1996). Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2, 341-364.
    • (1996) Bernoulli , vol.2 , pp. 341-364
    • Roberts, G.1    Tweedie, R.2
  • 30
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. & Wong, W. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82, 528-550.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.1    Wong, W.2
  • 31
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney, L. (1994). Markov chains for exploring posterior distributions. Ann. Statist. 22, 1701-1728.
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1728
    • Tierney, L.1
  • 32
    • 0033619197 scopus 로고    scopus 로고
    • Some adaptive Monte Carlo methods for Bayesian inference
    • Tierney, L. & Mira, A. (1999). Some adaptive Monte Carlo methods for Bayesian inference. Stat. Med. 18, 2507-2515.
    • (1999) Stat. Med. , vol.18 , pp. 2507-2515
    • Tierney, L.1    Mira, A.2
  • 33


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.