메뉴 건너뛰기




Volumn 16, Issue 5, 2011, Pages 258-264

MicroRNA networks and developmental plasticity in plants

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA;

EID: 79955705363     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2011.03.001     Document Type: Review
Times cited : (285)

References (89)
  • 1
    • 60149086351 scopus 로고    scopus 로고
    • Origin, biogenesis, and activity of plant microRNAs
    • Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136:669-687.
    • (2009) Cell , vol.136 , pp. 669-687
    • Voinnet, O.1
  • 2
    • 78650514497 scopus 로고    scopus 로고
    • SiRNAs from miRNA sites mediate DNA methylation of target genes
    • Chellappan P., et al. siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic. Acids Res. 2010, 38:6883-6894.
    • (2010) Nucleic. Acids Res. , vol.38 , pp. 6883-6894
    • Chellappan, P.1
  • 3
    • 77951974552 scopus 로고    scopus 로고
    • DNA methylation mediated by a microRNA pathway
    • Wu L., et al. DNA methylation mediated by a microRNA pathway. Mol. Cell 2010, 38:465-475.
    • (2010) Mol. Cell , vol.38 , pp. 465-475
    • Wu, L.1
  • 4
    • 0037162702 scopus 로고    scopus 로고
    • Prediction of plant microRNA targets
    • Rhoades M.W., et al. Prediction of plant microRNA targets. Cell 2002, 110:513-520.
    • (2002) Cell , vol.110 , pp. 513-520
    • Rhoades, M.W.1
  • 5
    • 2942672580 scopus 로고    scopus 로고
    • Computational identification of plant microRNAs and their targets, including a stress-induced miRNA
    • Jones-Rhoades M.W., Bartel D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 2004, 14:787-799.
    • (2004) Mol. Cell , vol.14 , pp. 787-799
    • Jones-Rhoades, M.W.1    Bartel, D.P.2
  • 6
    • 78649332113 scopus 로고    scopus 로고
    • Functional characterization of plant small RNAs based on next-generation sequencing data
    • Chen M., et al. Functional characterization of plant small RNAs based on next-generation sequencing data. Comput. Biol. Chem. 2010, 34:308-312.
    • (2010) Comput. Biol. Chem. , vol.34 , pp. 308-312
    • Chen, M.1
  • 7
    • 43449118038 scopus 로고    scopus 로고
    • Evolution of plant microRNAs and their targets
    • Axtell M.J., Bowman J.L. Evolution of plant microRNAs and their targets. Trends Plant Sci. 2008, 13:343-349.
    • (2008) Trends Plant Sci. , vol.13 , pp. 343-349
    • Axtell, M.J.1    Bowman, J.L.2
  • 8
    • 77957328824 scopus 로고    scopus 로고
    • A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana
    • Todesco M., et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 2010, 6:e1001031.
    • (2010) PLoS Genet. , vol.6
    • Todesco, M.1
  • 9
    • 34249665533 scopus 로고    scopus 로고
    • Heterochronic genes and the nature of developmental time
    • Moss E.G. Heterochronic genes and the nature of developmental time. Curr. Biol. 2007, 17:R425-434.
    • (2007) Curr. Biol. , vol.17
    • Moss, E.G.1
  • 10
    • 0036437372 scopus 로고    scopus 로고
    • Control of developmental timing by microRNAs and their targets
    • Pasquinelli A.E., Ruvkun G. Control of developmental timing by microRNAs and their targets. Annu. Rev. Cell Dev. Biol. 2002, 18:495-513.
    • (2002) Annu. Rev. Cell Dev. Biol. , vol.18 , pp. 495-513
    • Pasquinelli, A.E.1    Ruvkun, G.2
  • 11
    • 26244440240 scopus 로고    scopus 로고
    • Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues
    • Rougvie A.E. Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues. Development 2005, 132:3787-3798.
    • (2005) Development , vol.132 , pp. 3787-3798
    • Rougvie, A.E.1
  • 12
    • 34047174556 scopus 로고    scopus 로고
    • The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA
    • Chuck G., et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat. Genet. 2007, 39:544-549.
    • (2007) Nat. Genet. , vol.39 , pp. 544-549
    • Chuck, G.1
  • 13
    • 36549014611 scopus 로고    scopus 로고
    • The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1
    • Chuck G., et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet. 2007, 39:1517-1521.
    • (2007) Nat. Genet. , vol.39 , pp. 1517-1521
    • Chuck, G.1
  • 14
    • 58149115382 scopus 로고    scopus 로고
    • Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1
    • Chuck G., et al. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 2008, 135:3013-3019.
    • (2008) Development , vol.135 , pp. 3013-3019
    • Chuck, G.1
  • 15
    • 77951239484 scopus 로고    scopus 로고
    • The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries
    • Chuck G., et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development 2010, 137:1243-1250.
    • (2010) Development , vol.137 , pp. 1243-1250
    • Chuck, G.1
  • 16
    • 68749095252 scopus 로고    scopus 로고
    • MiR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana
    • Wang J.W., et al. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 2009, 138:738-749.
    • (2009) Cell , vol.138 , pp. 738-749
    • Wang, J.W.1
  • 17
    • 68749100821 scopus 로고    scopus 로고
    • The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis
    • Wu G., et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 2009, 138:750-759.
    • (2009) Cell , vol.138 , pp. 750-759
    • Wu, G.1
  • 18
    • 68949161539 scopus 로고    scopus 로고
    • Small RNAs and developmental timing in plants
    • Poethig R.S. Small RNAs and developmental timing in plants. Curr. Opin. Genet. Dev. 2009, 19:374-378.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 374-378
    • Poethig, R.S.1
  • 19
    • 0031042505 scopus 로고    scopus 로고
    • Phase change and the regulation of trichome distribution in Arabidopsis thaliana
    • Telfer A., et al. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 1997, 124:645-654.
    • (1997) Development , vol.124 , pp. 645-654
    • Telfer, A.1
  • 20
    • 0034113074 scopus 로고    scopus 로고
    • Heteroblasty in Arabidopsis thaliana (L.) Heynh
    • Tsukaya H., et al. Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta 2000, 210:536-542.
    • (2000) Planta , vol.210 , pp. 536-542
    • Tsukaya, H.1
  • 21
    • 66149087734 scopus 로고    scopus 로고
    • The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty
    • Usami T., et al. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 2009, 136:955-964.
    • (2009) Development , vol.136 , pp. 955-964
    • Usami, T.1
  • 22
    • 0242361521 scopus 로고    scopus 로고
    • Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes
    • Aukerman M.J., Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 2003, 15:2730-2741.
    • (2003) Plant Cell , vol.15 , pp. 2730-2741
    • Aukerman, M.J.1    Sakai, H.2
  • 23
    • 35748944555 scopus 로고    scopus 로고
    • The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis
    • Jung J.H., et al. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 2007, 19:2736-2748.
    • (2007) Plant Cell , vol.19 , pp. 2736-2748
    • Jung, J.H.1
  • 24
    • 33750373240 scopus 로고    scopus 로고
    • Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3
    • Wu G., Poethig R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 2006, 133:3539-3547.
    • (2006) Development , vol.133 , pp. 3539-3547
    • Wu, G.1    Poethig, R.S.2
  • 25
    • 21544469418 scopus 로고    scopus 로고
    • MicroRNA172 down-regulates glossy15 to promote vegetative phase change in maize
    • Lauter N., et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:9412-9417.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 9412-9417
    • Lauter, N.1
  • 26
    • 77956864465 scopus 로고    scopus 로고
    • Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana
    • Yu N., et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 2010, 22:2322-2335.
    • (2010) Plant Cell , vol.22 , pp. 2322-2335
    • Yu, N.1
  • 27
    • 68349085781 scopus 로고    scopus 로고
    • The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1
    • Yamaguchi A., et al. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 2009, 17:268-278.
    • (2009) Dev. Cell , vol.17 , pp. 268-278
    • Yamaguchi, A.1
  • 28
    • 68049146038 scopus 로고    scopus 로고
    • Repression of flowering by the miR172 target SMZ
    • Mathieu J., et al. Repression of flowering by the miR172 target SMZ. PLoS Biol. 2009, 7:e1000148.
    • (2009) PLoS Biol. , vol.7
    • Mathieu, J.1
  • 29
    • 84979819147 scopus 로고    scopus 로고
    • Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2
    • Yant L., et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 2010, 22:2156-2170.
    • (2010) Plant Cell , vol.22 , pp. 2156-2170
    • Yant, L.1
  • 30
    • 33646191642 scopus 로고    scopus 로고
    • DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7
    • Adenot X., et al. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 2006, 16:927-932.
    • (2006) Curr. Biol. , vol.16 , pp. 927-932
    • Adenot, X.1
  • 31
    • 33646165249 scopus 로고    scopus 로고
    • Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis
    • Fahlgren N., et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 2006, 16:939-944.
    • (2006) Curr. Biol. , vol.16 , pp. 939-944
    • Fahlgren, N.1
  • 32
    • 33646192268 scopus 로고    scopus 로고
    • Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway
    • Garcia D., et al. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr. Biol. 2006, 16:933-938.
    • (2006) Curr. Biol. , vol.16 , pp. 933-938
    • Garcia, D.1
  • 33
    • 33748130065 scopus 로고    scopus 로고
    • Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis
    • Hunter C., et al. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 2006, 133:2973-2981.
    • (2006) Development , vol.133 , pp. 2973-2981
    • Hunter, C.1
  • 34
    • 75949102282 scopus 로고    scopus 로고
    • The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus
    • Yan J., et al. The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in Lotus japonicus. Plant Physiol. 2010, 152:797-807.
    • (2010) Plant Physiol. , vol.152 , pp. 797-807
    • Yan, J.1
  • 35
    • 4644286235 scopus 로고    scopus 로고
    • SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis
    • Peragine A., et al. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 2004, 18:2368-2379.
    • (2004) Genes Dev. , vol.18 , pp. 2368-2379
    • Peragine, A.1
  • 36
    • 32944464673 scopus 로고    scopus 로고
    • Cloning and characterization of micro-RNAs from moss
    • Arazi T., et al. Cloning and characterization of micro-RNAs from moss. Plant J. 2005, 43:837-848.
    • (2005) Plant J. , vol.43 , pp. 837-848
    • Arazi, T.1
  • 37
    • 33750560215 scopus 로고    scopus 로고
    • Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis
    • Talmor-Neiman M., et al. Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J. 2006, 48:511-521.
    • (2006) Plant J. , vol.48 , pp. 511-521
    • Talmor-Neiman, M.1
  • 38
    • 34547668337 scopus 로고    scopus 로고
    • Common functions for diverse small RNAs of land plants
    • Axtell M.J., et al. Common functions for diverse small RNAs of land plants. Plant Cell 2007, 19:1750-1769.
    • (2007) Plant Cell , vol.19 , pp. 1750-1769
    • Axtell, M.J.1
  • 39
    • 58149163280 scopus 로고    scopus 로고
    • Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development
    • Cho S.H., et al. Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet. 2008, 4:e1000314.
    • (2008) PLoS Genet. , vol.4
    • Cho, S.H.1
  • 40
    • 16244398080 scopus 로고    scopus 로고
    • Specific effects of microRNAs on the plant transcriptome
    • Schwab R., et al. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 2005, 8:517-527.
    • (2005) Dev. Cell , vol.8 , pp. 517-527
    • Schwab, R.1
  • 41
    • 27744596243 scopus 로고    scopus 로고
    • Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis
    • Wang J.W., et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 2005, 17:2204-2216.
    • (2005) Plant Cell , vol.17 , pp. 2204-2216
    • Wang, J.W.1
  • 42
    • 77952821615 scopus 로고    scopus 로고
    • Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice
    • Jiao Y., et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 2010, 42:541-544.
    • (2010) Nat. Genet. , vol.42 , pp. 541-544
    • Jiao, Y.1
  • 43
    • 34248568219 scopus 로고    scopus 로고
    • Leaf senescence
    • Lim P.O., et al. Leaf senescence. Annu. Rev. Plant Biol. 2007, 58:115-136.
    • (2007) Annu. Rev. Plant Biol. , vol.58 , pp. 115-136
    • Lim, P.O.1
  • 44
    • 60749101298 scopus 로고    scopus 로고
    • Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis
    • Kim J.H., et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 2009, 323:1053-1057.
    • (2009) Science , vol.323 , pp. 1053-1057
    • Kim, J.H.1
  • 45
    • 54749156380 scopus 로고    scopus 로고
    • Control of jasmonate biosynthesis and senescence by miR319 targets
    • Schommer C., et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008, 6:e230.
    • (2008) PLoS Biol. , vol.6
    • Schommer, C.1
  • 46
    • 27744526218 scopus 로고    scopus 로고
    • AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana
    • Ellis C.M., et al. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 2005, 132:4563-4574.
    • (2005) Development , vol.132 , pp. 4563-4574
    • Ellis, C.M.1
  • 47
    • 77949385519 scopus 로고    scopus 로고
    • Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity
    • Lim P.O., et al. Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J. Exp. Bot. 2010, 61:1419-1430.
    • (2010) J. Exp. Bot. , vol.61 , pp. 1419-1430
    • Lim, P.O.1
  • 48
    • 22044442256 scopus 로고    scopus 로고
    • AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator
    • Okushima Y., et al. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J. 2005, 43:29-46.
    • (2005) Plant J. , vol.43 , pp. 29-46
    • Okushima, Y.1
  • 49
    • 0031153960 scopus 로고    scopus 로고
    • Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant
    • Aida M., et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 1997, 9:841-857.
    • (1997) Plant Cell , vol.9 , pp. 841-857
    • Aida, M.1
  • 50
    • 0141493493 scopus 로고    scopus 로고
    • Control of leaf morphogenesis by microRNAs
    • Palatnik J.F., et al. Control of leaf morphogenesis by microRNAs. Nature 2003, 425:257-263.
    • (2003) Nature , vol.425 , pp. 257-263
    • Palatnik, J.F.1
  • 51
    • 0037470360 scopus 로고    scopus 로고
    • Genetic control of surface curvature
    • Nath U., et al. Genetic control of surface curvature. Science 2003, 299:1404-1407.
    • (2003) Science , vol.299 , pp. 1404-1407
    • Nath, U.1
  • 52
    • 34250675995 scopus 로고    scopus 로고
    • TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis
    • Koyama T., et al. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 2007, 19:473-484.
    • (2007) Plant Cell , vol.19 , pp. 473-484
    • Koyama, T.1
  • 53
    • 78650854673 scopus 로고    scopus 로고
    • TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis
    • Koyama T., et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 2010, 22:3574-3588.
    • (2010) Plant Cell , vol.22 , pp. 3574-3588
    • Koyama, T.1
  • 54
    • 4444275405 scopus 로고    scopus 로고
    • MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems
    • Laufs P., et al. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 2004, 131:4311-4322.
    • (2004) Development , vol.131 , pp. 4311-4322
    • Laufs, P.1
  • 55
    • 33845791014 scopus 로고    scopus 로고
    • The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis
    • Nikovics K., et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 2006, 18:2929-2945.
    • (2006) Plant Cell , vol.18 , pp. 2929-2945
    • Nikovics, K.1
  • 56
    • 34249795776 scopus 로고    scopus 로고
    • Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato
    • Ori N., et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat. Genet. 2007, 39:787-791.
    • (2007) Nat. Genet. , vol.39 , pp. 787-791
    • Ori, N.1
  • 57
    • 73649091109 scopus 로고    scopus 로고
    • Control of cell proliferation in Arabidopsis thaliana by microRNA miR396
    • Rodriguez R.E., et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 2010, 137:103-112.
    • (2010) Development , vol.137 , pp. 103-112
    • Rodriguez, R.E.1
  • 58
    • 1542317414 scopus 로고    scopus 로고
    • MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity
    • Juarez M.T., et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 2004, 428:84-88.
    • (2004) Nature , vol.428 , pp. 84-88
    • Juarez, M.T.1
  • 59
    • 1542377275 scopus 로고    scopus 로고
    • Spatially restricted microRNA directs leaf polarity through ARGONAUTE1
    • Kidner C.A., Martienssen R.A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 2004, 428:81-84.
    • (2004) Nature , vol.428 , pp. 81-84
    • Kidner, C.A.1    Martienssen, R.A.2
  • 60
    • 27744496367 scopus 로고    scopus 로고
    • The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development
    • Li H., et al. The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development. Plant Cell 2005, 17:2157-2171.
    • (2005) Plant Cell , vol.17 , pp. 2157-2171
    • Li, H.1
  • 61
    • 0035822096 scopus 로고    scopus 로고
    • Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots
    • McConnell J.R., et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 2001, 411:709-713.
    • (2001) Nature , vol.411 , pp. 709-713
    • McConnell, J.R.1
  • 62
    • 0142072737 scopus 로고    scopus 로고
    • Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes
    • Emery J.F., et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 2003, 13:1768-1774.
    • (2003) Curr. Biol. , vol.13 , pp. 1768-1774
    • Emery, J.F.1
  • 63
    • 4444363152 scopus 로고    scopus 로고
    • MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region
    • Mallory A.C., et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J. 2004, 23:3356-3364.
    • (2004) EMBO J. , vol.23 , pp. 3356-3364
    • Mallory, A.C.1
  • 64
    • 61849115258 scopus 로고    scopus 로고
    • Pattern formation via small RNA mobility
    • Chitwood D.H., et al. Pattern formation via small RNA mobility. Genes Dev. 2009, 23:549-554.
    • (2009) Genes Dev. , vol.23 , pp. 549-554
    • Chitwood, D.H.1
  • 65
    • 34147154680 scopus 로고    scopus 로고
    • Two small regulatory RNAs establish opposing fates of a developmental axis
    • Nogueira F.T., et al. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev. 2007, 21:750-755.
    • (2007) Genes Dev. , vol.21 , pp. 750-755
    • Nogueira, F.T.1
  • 66
    • 58949089494 scopus 로고    scopus 로고
    • Regulation of small RNA accumulation in the maize shoot apex
    • Nogueira F.T., et al. Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet. 2009, 5:e1000320.
    • (2009) PLoS Genet. , vol.5
    • Nogueira, F.T.1
  • 67
    • 67650159718 scopus 로고    scopus 로고
    • Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana
    • Schwab R., et al. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PLoS ONE 2009, 4:e5980.
    • (2009) PLoS ONE , vol.4
    • Schwab, R.1
  • 68
    • 77957258643 scopus 로고    scopus 로고
    • Control of leaf and vein development by auxin
    • Scarpella E., et al. Control of leaf and vein development by auxin. Cold Spring Harb. Perspect. Biol. 2010, 2:a001511.
    • (2010) Cold Spring Harb. Perspect. Biol. , vol.2
    • Scarpella, E.1
  • 69
    • 70349934955 scopus 로고    scopus 로고
    • Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves
    • Donner T.J., et al. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 2009, 136:3235-3246.
    • (2009) Development , vol.136 , pp. 3235-3246
    • Donner, T.J.1
  • 70
    • 18644383084 scopus 로고    scopus 로고
    • HYL1 gene maintains venation and polarity of leaves
    • Yu L., et al. HYL1 gene maintains venation and polarity of leaves. Planta 2005, 221:231-242.
    • (2005) Planta , vol.221 , pp. 231-242
    • Yu, L.1
  • 71
    • 36048980020 scopus 로고    scopus 로고
    • Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family
    • Allen R.S., et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:16371-16376.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 16371-16376
    • Allen, R.S.1
  • 72
    • 77957745176 scopus 로고    scopus 로고
    • The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis
    • Alonso-Peral M.M., et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 2010, 154:757-771.
    • (2010) Plant Physiol. , vol.154 , pp. 757-771
    • Alonso-Peral, M.M.1
  • 73
    • 20444485252 scopus 로고    scopus 로고
    • The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development
    • Millar A.A., Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 2005, 17:705-721.
    • (2005) Plant Cell , vol.17 , pp. 705-721
    • Millar, A.A.1    Gubler, F.2
  • 74
    • 79952334906 scopus 로고    scopus 로고
    • MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects
    • Allen R.S., et al. MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 2010, 1:18.
    • (2010) Silence , vol.1 , pp. 18
    • Allen, R.S.1
  • 75
    • 51949088978 scopus 로고    scopus 로고
    • BetaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses
    • Yang J.Y., et al. betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev. 2008, 22:2564-2577.
    • (2008) Genes Dev. , vol.22 , pp. 2564-2577
    • Yang, J.Y.1
  • 76
    • 34548141843 scopus 로고    scopus 로고
    • MiR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems
    • Zhao L., et al. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J. 2007, 51:840-849.
    • (2007) Plant J. , vol.51 , pp. 840-849
    • Zhao, L.1
  • 77
    • 78049334183 scopus 로고    scopus 로고
    • On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development
    • Wollmann H., et al. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 2010, 137:3633-3642.
    • (2010) Development , vol.137 , pp. 3633-3642
    • Wollmann, H.1
  • 78
    • 35748967300 scopus 로고    scopus 로고
    • Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development
    • Liu B., et al. Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 2007, 19:2705-2718.
    • (2007) Plant Cell , vol.19 , pp. 2705-2718
    • Liu, B.1
  • 79
    • 77956527844 scopus 로고    scopus 로고
    • Oscillating gene expression determines competence for periodic Arabidopsis root branching
    • Moreno-Risueno M.A., et al. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 2010, 329:1306-1311.
    • (2010) Science , vol.329 , pp. 1306-1311
    • Moreno-Risueno, M.A.1
  • 80
    • 70349556320 scopus 로고    scopus 로고
    • Regulation and functional specialization of small RNA-target nodes during plant development
    • Rubio-Somoza I., et al. Regulation and functional specialization of small RNA-target nodes during plant development. Curr. Opin. Plant Biol. 2009, 12:622-627.
    • (2009) Curr. Opin. Plant Biol. , vol.12 , pp. 622-627
    • Rubio-Somoza, I.1
  • 81
    • 24944510549 scopus 로고    scopus 로고
    • MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development
    • Guo H.S., et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 2005, 17:1376-1386.
    • (2005) Plant Cell , vol.17 , pp. 1376-1386
    • Guo, H.S.1
  • 82
    • 2942697259 scopus 로고    scopus 로고
    • MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs
    • Mallory A.C., et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 2004, 14:1035-1046.
    • (2004) Curr. Biol. , vol.14 , pp. 1035-1046
    • Mallory, A.C.1
  • 83
    • 38649096571 scopus 로고    scopus 로고
    • Cell-specific nitrogen responses mediate developmental plasticity
    • Gifford M.L., et al. Cell-specific nitrogen responses mediate developmental plasticity. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:803-808.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 803-808
    • Gifford, M.L.1
  • 84
    • 77953193344 scopus 로고    scopus 로고
    • MiR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth
    • Marin E., et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 2010, 22:1104-1117.
    • (2010) Plant Cell , vol.22 , pp. 1104-1117
    • Marin, E.1
  • 85
    • 77749264610 scopus 로고    scopus 로고
    • Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana
    • Vidal E.A., et al. Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4477-4482.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4477-4482
    • Vidal, E.A.1
  • 86
    • 77950365831 scopus 로고    scopus 로고
    • Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development
    • Yoon E.K., et al. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res. 2010, 38:1382-1391.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 1382-1391
    • Yoon, E.K.1
  • 87
    • 77955940851 scopus 로고    scopus 로고
    • Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants
    • Krouk G., et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 2010, 18:927-937.
    • (2010) Dev. Cell , vol.18 , pp. 927-937
    • Krouk, G.1
  • 88
    • 72049120376 scopus 로고    scopus 로고
    • Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance
    • Gutierrez L., et al. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 2009, 21:3119-3132.
    • (2009) Plant Cell , vol.21 , pp. 3119-3132
    • Gutierrez, L.1
  • 89
    • 7044228135 scopus 로고    scopus 로고
    • Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition
    • Tian C.E., et al. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J. 2004, 40:333-343.
    • (2004) Plant J. , vol.40 , pp. 333-343
    • Tian, C.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.