메뉴 건너뛰기




Volumn 48, Issue 3 PART 1, 2010, Pages 1211-1223

Improved hyperspectral image processing algorithm testing using synthetic imagery and factorial designed experiments

Author keywords

Anomaly detection; Blocked adaptive computationally efficient outlier nominator (BACON) detector; Experimental design; Image generation; Nested factorial designs; Remote sensing; RX detector; Synthetic hyperspectral imaging

Indexed keywords

ANOMALY DETECTION; COMPUTATIONALLY EFFICIENT; FACTORIAL DESIGN; HYPERSPECTRAL IMAGING; IMAGE GENERATIONS; RX DETECTORS;

EID: 77958572610     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2009.2029331     Document Type: Article
Times cited : (11)

References (43)
  • 2
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image analysis
    • Jan
    • D. Landgrebe, "Hyperspectral image analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 3
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • DOI 10.1109/79.974715
    • G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12-16, Jan. 2002. (Pubitemid 34237204)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 4
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • DOI 10.1109/79.974724
    • D. Manolakis and G. Shaw, "Detection algorithms for hyperspectral imaging applications," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29-43, Jan. 2002. (Pubitemid 34237206)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.G.1    Shaw, G.2
  • 5
    • 84865135283 scopus 로고    scopus 로고
    • Rochester Inst. Technol., Rochester, NY
    • The DIRSIG User's Manual, DIRS, Rochester Inst. Technol., Rochester, NY, 2006.
    • (2006) The DIRSIG User's Manual, DIRS
  • 6
    • 0025508756 scopus 로고
    • Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution
    • Oct
    • I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution," IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.
    • (1990) IEEE Trans. Acoust., Speech, Signal Process. , vol.38 , Issue.10 , pp. 1760-1770
    • Reed, I.S.1    Yu, X.2
  • 7
    • 0034282347 scopus 로고    scopus 로고
    • BACON: Blocked adaptive computationally efficient outlier nominators
    • Sep
    • N. Billor, A. S. Hadi, and P. F. Velleman, "BACON: Blocked adaptive computationally efficient outlier nominators," Comput. Stat. Data Anal., vol. 34, no. 3, pp. 279-298, Sep. 2000.
    • (2000) Comput. Stat. Data Anal. , vol.34 , Issue.3 , pp. 279-298
    • Billor, N.1    Hadi, A.S.2    Velleman, P.F.3
  • 9
    • 77149128951 scopus 로고    scopus 로고
    • A comparison of multivariate outlier detection methods for finding hyperspectral anomalies
    • T. E. Smetek and K. W. Bauer, "A comparison of multivariate outlier detection methods for finding hyperspectral anomalies," Mil. Oper. Res., vol. 13, no. 4, pp. 19-44, 2008.
    • (2008) Mil. Oper. Res. , vol.13 , Issue.4 , pp. 19-44
    • Smetek, T.E.1    Bauer, K.W.2
  • 11
    • 0036613261 scopus 로고    scopus 로고
    • Anomaly detection and classification for hyperspectral imagery
    • Jun
    • C.-I Chang and S.-S. Chiang, "Anomaly detection and classification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6, pp. 1314-1325, Jun. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1314-1325
    • Chang, C.-I.1    Chiang, S.-S.2
  • 14
    • 0242720156 scopus 로고    scopus 로고
    • Advances in wide-area hyperspectral image simulation
    • Sep.
    • E. J. Ientillucci and S. D. Brown, "Advances in wide-area hyperspectral image simulation," Proc. SPIE, vol. 5075, pp. 110-121, Sep. 2003.
    • (2003) Proc. SPIE , vol.5075 , pp. 110-121
    • Ientillucci, E.J.1    Brown, S.D.2
  • 17
    • 27844452205 scopus 로고    scopus 로고
    • Combining image derived spectra and physics based models for hyperspectral image exploitation
    • Oct.
    • J. R. Schott, "Combining image derived spectra and physics based models for hyperspectral image exploitation," in Proc. 29th AIPR Workshop, Oct. 2000, pp. 15-24.
    • (2000) Proc. 29th AIPR Workshop , pp. 15-24
    • Schott, J.R.1
  • 18
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G. A. Shaw and H.-H. K. Burke, "Spectral imaging for remote sensing," Lincoln Lab. J., vol. 14, pp. 3-28, 2003.
    • (2003) Lincoln Lab. J. , vol.14 , pp. 3-28
    • Shaw, G.A.1    Burke, H.-H.K.2
  • 22
    • 34648831204 scopus 로고    scopus 로고
    • Multisource data processing for semi-automated radiometrically-correct scene simulation
    • S. R. Lach and J. P. Kerekes, "Multisource data processing for semi-automated radiometrically-correct scene simulation," in Proc. IEEE Urban Remote Sens. Joint Event, 2007, pp. 1-10.
    • (2007) Proc. IEEE Urban Remote Sens. Joint Event , pp. 1-10
    • Lach, S.R.1    Kerekes, J.P.2
  • 25
    • 34948861021 scopus 로고    scopus 로고
    • Reducing computational complexity in hyperspectral anomaly detection: A feature level fusion approach
    • DOI 10.1109/IGARSS.2006.466, 4241613, 2006 IEEE International Geoscience and Remote Sensing Symposium, IGARSS
    • N. Acito, G. Corsini, M. Diani, and M. Greco, "Reducing computational complexity in hyperspectral anomaly detection: A feature level fusion approach," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2006, pp. 1804-1807. (Pubitemid 47515889)
    • (2006) International Geoscience and Remote Sensing Symposium (IGARSS) , pp. 1804-1807
    • Acito, N.1    Corsini, G.2    Diani, M.3    Greco, M.4
  • 27
    • 34249319471 scopus 로고    scopus 로고
    • Multiple-detector fusion for anomaly detection in multispectral imagery based on maximum entropy and non-parametric estimation
    • W. Di, Q. Pan, Y. Zhao, and L. He, "Multiple-detector fusion for anomaly detection in multispectral imagery based on maximum entropy and non-parametric estimation," in Proc. IEEE Int. Conf. Signal Process., 2006, vol. 3, pp. 16-20.
    • (2006) Proc. IEEE Int. Conf. Signal Process. , vol.3 , pp. 16-20
    • Di, W.1    Pan, Q.2    Zhao, Y.3    He, L.4
  • 28
    • 33947628140 scopus 로고    scopus 로고
    • A selective kernal PCA algorithm for anomaly detection in hyperspectral imagery
    • G. Yanfeng, L. Ying, and Z. Ye, "A selective kernal PCA algorithm for anomaly detection in hyperspectral imagery," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2006, vol. 2, pp. 725-728.
    • (2006) Proc. IEEE Int. Conf. Acoust., Speech Signal Process. , vol.2 , pp. 725-728
    • Yanfeng, G.1    Ying, L.2    Ye, Z.3
  • 29
    • 15944384621 scopus 로고    scopus 로고
    • Adaptive causal anomaly detection for hyperspectral imagery
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • M. Hsueh and C.-I Chang, "Adaptive causal anomaly detection for hyper-spectral imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2004, vol. 5, pp. 3222-3224. (Pubitemid 40437779)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.5 , pp. 3222-3224
    • Hsueh, M.1    Chang, C.-I.2
  • 30
    • 15944369640 scopus 로고    scopus 로고
    • A nested Spatial window-based approach to target detection for hyperspectral imagery
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • W. Liu and C.-I Chang, "A nested spatial window-based approach to target detection for hyperspectral imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2004, vol. 5, pp. 266-268. (Pubitemid 40438496)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.1 , pp. 266-268
    • Liu, W.1    Chang, C.-I.2
  • 31
    • 66549113040 scopus 로고    scopus 로고
    • Multiple-window anomaly detection for hyper-spectral imagery
    • W. Liu and C.-I Chang, "Multiple-window anomaly detection for hyper-spectral imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, vol. 2, pp. 41-44.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.2 , pp. 41-44
    • Liu, W.1    Chang, C.-I.2
  • 32
    • 62949123396 scopus 로고    scopus 로고
    • Anomaly detection in hyperspec-tral imagery based on kernel ICA feature extraction
    • F. Mei, C. Zhao, L. Wang, and H. Huo, "Anomaly detection in hyperspec-tral imagery based on kernel ICA feature extraction," in Proc. 2nd Int. Symp. Intell. Inf. Technol. Appl., 2008, vol. 1, pp. 869-873.
    • (2008) Proc. 2nd Int. Symp. Intell. Inf. Technol. Appl. , vol.1 , pp. 869-873
    • Mei, F.1    Zhao, C.2    Wang, L.3    Huo, H.4
  • 33
    • 62949235910 scopus 로고    scopus 로고
    • An adaptive kernel method for anomaly detection in hyperspectral imagery
    • F. Mei, C. Zhao, H. Huo, and Y. Sun, "An adaptive kernel method for anomaly detection in hyperspectral imagery," in Proc. 2nd Int. Symp. Intell. Inf. Technol. Appl., 2008, vol. 1, pp. 874-878.
    • (2008) Proc. 2nd Int. Symp. Intell. Inf. Technol. Appl. , vol.1 , pp. 874-878
    • Mei, F.1    Zhao, C.2    Huo, H.3    Sun, Y.4
  • 34
    • 69949171154 scopus 로고    scopus 로고
    • A nonlinear kernel-based joint fusion/detection of anomalies using hyperspectral and SAR imagery
    • N. M. Nasrabadi, "A nonlinear kernel-based joint fusion/detection of anomalies using hyperspectral and SAR imagery," in Proc. IEEE Int. Conf. Image Process., 2008, pp. 1864-1867.
    • (2008) Proc. IEEE Int. Conf. Image Process. , pp. 1864-1867
    • Nasrabadi, N.M.1
  • 36
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • DOI 10.1109/TGRS.2006.873019, 1661816
    • A. Banerjee, P. Burlina, and C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006. (Pubitemid 44192167)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 39
    • 67649755526 scopus 로고    scopus 로고
    • Texture feature selection for buried mine detection in airborn multispectral imagery
    • S. Tiwari, S. Agarwal, and A. Trang, "Texture feature selection for buried mine detection in airborn multispectral imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, vol. 1, pp. 145-148.
    • (2008) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.1 , pp. 145-148
    • Tiwari, S.1    Agarwal, S.2    Trang, A.3
  • 40
    • 77955300165 scopus 로고    scopus 로고
    • Unmixing component analysis for anomaly detection in hyperspectral imager
    • G. Yanfeng, Z. Ye, and L. Ying, "Unmixing component analysis for anomaly detection in hyperspectral imager," in Proc. IEEE Int. Conf. Image Process., 2006, pp. 965-968.
    • (2006) Proc. IEEE Int. Conf. Image Process. , pp. 965-968
    • Yanfeng, G.1    Ye, Z.2    Ying, L.3
  • 41
    • 63149112633 scopus 로고    scopus 로고
    • Dimensionality reduction based on tensor modeling for classification methods
    • Apr
    • N. Renard and S. Bourennane, "Dimensionality reduction based on tensor modeling for classification methods," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 4, pp. 1123-1131, Apr. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1123-1131
    • Renard, N.1    Bourennane, S.2
  • 42
    • 18444372907 scopus 로고    scopus 로고
    • Using multiband correlation models for the invariant recognition of 3-D hyperspectral textures
    • May
    • M. Shi and G. Healey, "Using multiband correlation models for the invariant recognition of 3-D hyperspectral textures," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 5, pp. 1201-1209, May 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.5 , pp. 1201-1209
    • Shi, M.1    Healey, G.2
  • 43
    • 0033872604 scopus 로고    scopus 로고
    • Experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery
    • DOI 10.1109/36.841984
    • C.-I Chang and H. Ren, "An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 1044-1063, Mar. 2000. (Pubitemid 30594774)
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.2 , pp. 1044-1063
    • Chang, C.-I.1    Ren, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.