메뉴 건너뛰기




Volumn 14, Issue 1, 1998, Pages 149-159

Asymptotic behaviour of the minimum bound method for choosing the regularization parameter

Author keywords

[No Author keywords available]

Indexed keywords


EID: 3342939830     PISSN: 02665611     EISSN: None     Source Type: Journal    
DOI: 10.1088/0266-5611/14/1/013     Document Type: Article
Times cited : (9)

References (21)
  • 1
    • 0011509320 scopus 로고
    • Approximation of method of regularization estimators
    • Cox D D 1988 Approximation of method of regularization estimators Ann. Stat. 16 694-712
    • (1988) Ann. Stat. , vol.16 , pp. 694-712
    • Cox, D.D.1
  • 2
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven P and Wahba G 1979 Smoothing noisy data with spline functions Numer. Math. 31 377-403
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 3
    • 0000797172 scopus 로고
    • A posteriori parameter choice for general regularization methods for solving linear ill-posed problems
    • Engl H W and Gfrerer H 1988 A posteriori parameter choice for general regularization methods for solving linear ill-posed problems Appl. Numer. Math. 4 395-417
    • (1988) Appl. Numer. Math. , vol.4 , pp. 395-417
    • Engl, H.W.1    Gfrerer, H.2
  • 4
    • 84966214028 scopus 로고
    • An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates
    • Gfrerer H 1987 An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates Math. Comput. 49 507-22
    • (1987) Math. Comput. , vol.49 , pp. 507-522
    • Gfrerer, H.1
  • 7
    • 38249023906 scopus 로고
    • Regularization of ill-posed problems: Optimal parameter choice in finite dimensions
    • Groetsch C W and Neubauer A 1989 Regularization of ill-posed problems: optimal parameter choice in finite dimensions J. Approx. Theory 58 184-200
    • (1989) J. Approx. Theory , vol.58 , pp. 184-200
    • Groetsch, C.W.1    Neubauer, A.2
  • 8
    • 0023869339 scopus 로고
    • A variant of finite dimensional Tikhonov regularization with a-posteriori parameter choice
    • King J T and Neubauer A 1988 A variant of finite dimensional Tikhonov regularization with a-posteriori parameter choice Computing 40 91-109
    • (1988) Computing , vol.40 , pp. 91-109
    • King, J.T.1    Neubauer, A.2
  • 10
    • 84966254921 scopus 로고
    • Convergence rates for regularized solutions
    • Lukas M A 1988 Convergence rates for regularized solutions Math. Comput. 51 107-31
    • (1988) Math. Comput. , vol.51 , pp. 107-131
    • Lukas, M.A.1
  • 11
    • 3342885022 scopus 로고
    • Methods for choosing the regularization parameter Inverse Problems in Partial Differential Equations
    • ed R S Anderssen and A K Pani (Canberra: Australian National University)
    • Lukas M A 1992 Methods for choosing the regularization parameter Inverse Problems in Partial Differential Equations (Proc. Centre for Mathematical Analysis) ed R S Anderssen and A K Pani (Canberra: Australian National University)
    • (1992) Proc. Centre for Mathematical Analysis
    • Lukas, M.A.1
  • 12
    • 21344495243 scopus 로고
    • Asymptotic optimality of generalized cross-validation for choosing the regularization parameter
    • Lukas M A 1993 Asymptotic optimality of generalized cross-validation for choosing the regularization parameter Numer. Math. 66 41-66
    • (1993) Numer. Math. , vol.66 , pp. 41-66
    • Lukas, M.A.1
  • 13
    • 84974313084 scopus 로고
    • On the discrepancy principle and generalized maximum likelihood for regularization
    • Lukas M A 1995 On the discrepancy principle and generalized maximum likelihood for regularization Bull. Austral. Math. Soc. 52 399-424
    • (1995) Bull. Austral. Math. Soc. , vol.52 , pp. 399-424
    • Lukas, M.A.1
  • 14
    • 3342987070 scopus 로고
    • Convergence rates for moment collocation solutions of linear operator equations
    • Lukas M A 1995 Convergence rates for moment collocation solutions of linear operator equations Numer. Funct. Anal. Opt. 16 743-50
    • (1995) Numer. Funct. Anal. Opt. , vol.16 , pp. 743-750
    • Lukas, M.A.1
  • 15
    • 0001595602 scopus 로고    scopus 로고
    • Comparisons of parameter choice methods for regularization with discrete noisy data
    • Lukas M A 1998 Comparisons of parameter choice methods for regularization with discrete noisy data Inverse Problems 14 161-84
    • (1998) Inverse Problems , vol.14 , pp. 161-184
    • Lukas, M.A.1
  • 16
    • 0000823716 scopus 로고
    • Convergence rates for regularized solutions of integral equations from discrete noisy data
    • Nychka D W and Cox D D 1989 Convergence rates for regularized solutions of integral equations from discrete noisy data Ann. Stat. 17 556-72
    • (1989) Ann. Stat. , vol.17 , pp. 556-572
    • Nychka, D.W.1    Cox, D.D.2
  • 17
    • 0008325004 scopus 로고
    • On the discrepancy principle for the solution of ill-posed problems
    • in Russian
    • Raus T 1984 On the discrepancy principle for the solution of ill-posed problems Uch. Zap. Tartu Gos. Univ. 672 16-26 (in Russian)
    • (1984) Uch. Zap. Tartu Gos. Univ. , vol.672 , pp. 16-26
    • Raus, T.1
  • 18
    • 0002729317 scopus 로고
    • On the residue principle for the solution of ill-posed problems with non-selfadjoint operator
    • in Russian
    • Raus T 1984 On the residue principle for the solution of ill-posed problems with non-selfadjoint operator Uch. Zap. Tartu Gos. Univ. 715 12-20 (in Russian)
    • (1984) Uch. Zap. Tartu Gos. Univ. , vol.715 , pp. 12-20
    • Raus, T.1
  • 19
    • 0006760903 scopus 로고
    • Convergence rates of certain approximate solutions to linear operator equations of the first kind
    • Wahba G 1973 Convergence rates of certain approximate solutions to linear operator equations of the first kind J. Approx. Theory 7 167-85
    • (1973) J. Approx. Theory , vol.7 , pp. 167-185
    • Wahba, G.1
  • 20
    • 0000544453 scopus 로고
    • Practical approximate solutions to linear operator equations when the data are noisy
    • Wahba G 1977 Practical approximate solutions to linear operator equations when the data are noisy SIAM J. Numer. Anal. 14 651-67
    • (1977) SIAM J. Numer. Anal. , vol.14 , pp. 651-667
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.