메뉴 건너뛰기




Volumn 96, Issue 453, 2001, Pages 233-246

Confidence intervals for nonparametric curve estimates: Toward more uniform pointwise coverage

Author keywords

Coverage probability; Local cross validation; Nonparametric regression; Pointwise confidence intervals; Smoothing splines

Indexed keywords


EID: 1842665178     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1198/016214501750332811     Document Type: Article
Times cited : (59)

References (16)
  • 3
    • 34250263445 scopus 로고
    • Smoothing Noisy Data With Spline Functions
    • Craven, P., and Wahba, G. (1979), “Smoothing Noisy Data With Spline Functions,” Numerische Mathematik, 31, 377–403.
    • (1979) Numerische Mathematik , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 7
    • 0024607448 scopus 로고
    • Flexible Parsimonious Smoothing and Additive Modeling
    • Friedman, J. H., and Silverman, B. W. (1989), “Flexible Parsimonious Smoothing and Additive Modeling,” Technometrics, 31, 3–21.
    • (1989) Technometrics , vol.31 , pp. 3-21
    • Friedman, J.H.1    Silverman, B.W.2
  • 8
    • 84909719647 scopus 로고
    • How far are Automatically Chosen Regression Smoothing Parameters From Their Optimum?
    • Härdle, W., Hall, P., and Marron, J. S. (1988), “How far are Automatically Chosen Regression Smoothing Parameters From Their Optimum?” Journal of the American Statistical Association, 83, 86–95.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 86-95
    • Härdle, W.1    Hall, P.2    Marron, J.S.3
  • 10
    • 0000858754 scopus 로고
    • Variable Bandwidth Kernel Estimators of Regression Curves
    • Müller, H. G., and Stadtmüller, U. (1987), “Variable Bandwidth Kernel Estimators of Regression Curves,” The Annals of Statistics, 15, 182–201.
    • (1987) The Annals of Statistics , vol.15 , pp. 182-201
    • Müller, H.G.1    Stadtmüller, U.2
  • 11
    • 33845606053 scopus 로고
    • Bayesian Confidence Intervals for Smoothing Splines
    • Nychka, D. (1988), “Bayesian Confidence Intervals for Smoothing Splines,” Journal of the American Statistical Association, 83, 1134–1143.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 1134-1143
    • Nychka, D.1
  • 12
    • 0000129069 scopus 로고
    • The Average Posterior Variance of a Smoothing Spline and a Consistent Estimate of the Average Squared Error
    • Nychka, D. (1990), “The Average Posterior Variance of a Smoothing Spline and a Consistent Estimate of the Average Squared Error,” The Annals of Statistics, 18, 415–428.
    • (1990) The Annals of Statistics , vol.18 , pp. 415-428
    • Nychka, D.1
  • 13
    • 21844509828 scopus 로고
    • Splines as Local Smoothers
    • Nychka, D. (1995), “Splines as Local Smoothers,” The Annals of Statistics, 23, 1175–1197.
    • (1995) The Annals of Statistics , vol.23 , pp. 1175-1197
    • Nychka, D.1
  • 15
    • 0000939344 scopus 로고
    • Bayesian ‘Confidence Intervals for the Cross-validated Smoothing Spline,”
    • Wahba, G. (1983), “Bayesian ‘Confidence Intervals’ for the Cross-validated Smoothing Spline,” Journal of the Royal Statistical Society, Ser. B, 45, 133–150.
    • (1983) Journal of the Royal Statistical Society, Ser. B , vol.45 , pp. 133-150
    • Wahba, G.1
  • 16
    • 0002617598 scopus 로고    scopus 로고
    • A Completely Automatic French Curve: Fitting Spline Functions By Cross Validation
    • Wahba, G., and Wold, “A Completely Automatic French Curve: Fitting Spline Functions By Cross Validation,” Communications in Statistics, 4, 1–17.
    • Communications in Statistics , vol.4 , pp. 1-17
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.