메뉴 건너뛰기




Volumn 26, Issue 10, 2009, Pages 1503-1510

Predicting the longitudinal dispersion coefficient using support vector machine and adaptive neuro-fuzzy inference system techniques

Author keywords

Adaptive neuro fuzzy inference system; Longitudinal dispersion coefficient; Regression model; Support vector machine

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS MODEL; CORRELATION COEFFICIENT; DATA-DRIVEN METHODS; DEVELOPED MODEL; ERROR DISTRIBUTIONS; GEOMETRIC DATA; LONGITUDINAL DISPERSION COEFFICIENT; LONGITUDINAL DISPERSIONS; NATURAL STREAMS; OPTIMUM MODEL; REGRESSION MODEL; REGRESSION TECHNIQUES; STATISTIC ANALYSIS; STRUCTURAL RISK MINIMIZATION; SVM MODEL;

EID: 70449471062     PISSN: 10928758     EISSN: None     Source Type: Journal    
DOI: 10.1089/ees.2008.0360     Document Type: Article
Times cited : (66)

References (49)
  • 1
    • 0015159920 scopus 로고
    • Dispersion in natural streams
    • Bansal, M.K. (1971). Dispersion in natural streams. J. Hydraul. Div. 97, 1867.
    • (1971) J. Hydraul. Div. , vol.97 , pp. 1867
    • Bansal, M.K.1
  • 2
    • 44949255368 scopus 로고    scopus 로고
    • An expert system for predicting aeration performance of weirs by using ANFIS
    • Baylar, A., Hanbay, D., and Ozpolat, E. (2008). An expert system for predicting aeration performance of weirs by using ANFIS. Expert Syst. Appl. 35, 1214.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1214
    • Baylar, A.1    Hanbay, D.2    Ozpolat, E.3
  • 4
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky, V., and Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netwks 17, 113.
    • (2004) Neural Netwks , vol.17 , pp. 113
    • Cherkassky, V.1    Ma, Y.2
  • 5
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S.L. (1994). Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2, 267.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267
    • Chiu, S.L.1
  • 8
    • 0035504967 scopus 로고    scopus 로고
    • Longitudinal dispersion coefficient in straight rivers
    • Deng, Z.Q., Singh, V.P., and Bengtsson, L. (2001). Longitudinal dispersion coefficient in straight rivers. J. Hydraul. Eng. 127, 919.
    • (2001) J. Hydraul. Eng. , vol.127 , pp. 919
    • Deng, Z.Q.1    Singh, V.P.2    Bengtsson, L.3
  • 9
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • Dibike, Y.B., Velickov, S., Solomatine, D.P., and Abbott, M.B. (2001). Model induction with support vector machines: Introduction and applications. J. Comput. Civil Eng. 15, 208.
    • (2001) J. Comput. Civil Eng. , vol.15 , pp. 208
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.P.3    Abbott, M.B.4
  • 10
    • 84958431243 scopus 로고
    • The dispersion of a marked fluid in turbulent shear flow
    • Elder, J.W. (1959). The dispersion of a marked fluid in turbulent shear flow. J. Fluid Mech. 5, 544.
    • (1959) J. Fluid Mech. , vol.5 , pp. 544
    • Elder, J.W.1
  • 11
    • 60249093012 scopus 로고    scopus 로고
    • Using nondimensional velocity curves for estimation of longitudinal dispersion coefficient
    • October 16-17, Ahvaz, Iran
    • Faghfor-Maghrebi, M.M., and Givehchi, S. (2007). Using nondimensional velocity curves for estimation of longitudinal dispersion coefficient. In: Proceeding of the 7th International Symposium River Engineering, October 16-17, Ahvaz, Iran, p. 87.
    • (2007) Proceeding of the 7th International Symposium River Engineering , pp. 87
    • Faghfor-Maghrebi, M.M.1    Givehchi, S.2
  • 12
    • 0001553629 scopus 로고
    • Discussion of simple method for predicting dispersion in streams, by R.S. McQuivey and T.N. Keefer
    • Fischer, B.H. (1975). Discussion of simple method for predicting dispersion in streams, by R.S. McQuivey and T.N. Keefer. J. Environ. Eng. Div. 101, 453.
    • (1975) J. Environ. Eng. Div. , vol.101 , pp. 453
    • Fischer, B.H.1
  • 14
    • 4944228528 scopus 로고    scopus 로고
    • Department of Computer Science and Information Engineering, National Taiwan University. Available at: Accessed December 20, 2006
    • Hsu, C., Chang, C., and Lin, C. (2003). A Practical Guide to Support Vector Classification. Department of Computer Science and Information Engineering, National Taiwan University. Available at: www.csie.ntu.edu.tw= cjlin=papers=guide=guide.pd. Accessed December 20, 2006.
    • (2003) A Practical Guide to Support Vector Classification
    • Hsu, C.1    Chang, C.2    Lin, C.3
  • 15
    • 0004262735 scopus 로고
    • New York: John Wiley and Sons, Inc
    • Huber, P.J. (1981). Robust Statistics. New York: John Wiley and Sons, Inc.
    • (1981) Robust Statistics
    • Huber, P.J.1
  • 17
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks
    • Jain, A., and Indurthy, S.K.V.P. (2003). Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks. Jour. Hyd. Eng. ASCE 8, 93.
    • (2003) Jour. Hyd. Eng. ASCE , vol.8 , pp. 93
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 18
    • 42449161613 scopus 로고    scopus 로고
    • Prediction of municipal solid waste generation by use of artificial neural network: A case study of Mashhad
    • Jalili-Ghazizade, M., and Noori, R. (2008). Prediction of municipal solid waste generation by use of artificial neural network: A case study of Mashhad. Int. J. Environ. Res. 2, 13.
    • (2008) Int. J. Environ. Res. , vol.2 , pp. 13
    • Jalili-Ghazizade, M.1    Noori, R.2
  • 19
    • 0013366549 scopus 로고
    • Rule extraction using generalized neural networks
    • Jang, J.S.R. (1991). Rule extraction using generalized neural networks. In: Proceedings of the IFSA World Congress, Vol.4, p. 82.
    • (1991) Proceedings of the IFSA World Congress , vol.4 , pp. 82
    • Jang, J.S.R.1
  • 20
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J.S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Manage. Cyber. 23, 665.
    • (1993) IEEE Trans. Syst. Manage. Cyber. , vol.23 , pp. 665
    • Jang, J.S.R.1
  • 22
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang, J.S.R., and Sun, C.T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE 83, 378-406.
    • (1995) Proceedings of the IEEE , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 24
    • 0036129501 scopus 로고    scopus 로고
    • Longitudinal dispersion coefficients in natural channels
    • Kashefipour, M.S., and Falconer, R.A. (2002). Longitudinal dispersion coefficients in natural channels. Water Res. 36, 1596.
    • (2002) Water Res. , vol.36 , pp. 1596
    • Kashefipour, M.S.1    Falconer, R.A.2
  • 25
    • 0032029702 scopus 로고    scopus 로고
    • Hydraulic estimation of dispersion coefficient for streams
    • Koussis, A.D., and Rodriguez-Mirasol, J. (1998). Hydraulic estimation of dispersion coefficient for streams. J. Hydraul. Eng. 124, 317.
    • (1998) J. Hydraul. Eng. , vol.124 , pp. 317
    • Koussis, A.D.1    Rodriguez-Mirasol, J.2
  • 26
    • 46149126623 scopus 로고    scopus 로고
    • Predicting motor vehicle crashes using Support Vector Machine models
    • Li, X., Lord, D., Zhang, Y., and Xie, Y. (2008). Predicting motor vehicle crashes using Support Vector Machine models. Accident Anal. Prev. 40, 1611.
    • (2008) Accident Anal. Prev. , vol.40 , pp. 1611
    • Li, X.1    Lord, D.2    Zhang, Y.3    Xie, Y.4
  • 28
    • 0017459204 scopus 로고
    • Predicting dispersion coefficient of stream
    • Liu, H. (1977). Predicting dispersion coefficient of stream. Journal of Environment Engineering Div. 103, 59-69.
    • (1977) Journal of Environment Engineering Div. , vol.103 , pp. 59-69
    • Liu, H.1
  • 29
    • 33745051604 scopus 로고    scopus 로고
    • The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine
    • Liu, H., Yao, X., Zhang, R., Liu, M., Hu, Z., and Fan, B. (2006). The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine. Chemosphere 63, 722.
    • (2006) Chemosphere , vol.63 , pp. 722
    • Liu, H.1    Yao, X.2    Zhang, R.3    Liu, M.4    Hu, Z.5    Fan, B.6
  • 30
    • 41549103711 scopus 로고    scopus 로고
    • Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme
    • Lu, W.Z., and Wang, D. (2008). Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Sci. Total Environ. 395, 109.
    • (2008) Sci. Total Environ. , vol.395 , pp. 109
    • Lu, W.Z.1    Wang, D.2
  • 31
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the Support vector machine in forecasting ambient air pollutant trends
    • Lu, W.Z., and Wang, W.J. (2005). Potential assessment of the Support vector machine in forecasting ambient air pollutant trends. Chemosphere 59, 693.
    • (2005) Chemosphere , vol.59 , pp. 693
    • Lu, W.Z.1    Wang, W.J.2
  • 32
    • 0023702501 scopus 로고
    • Effect of bed and side roughness on dispersion in open channels
    • Magazine, M.K., Pathak, S.K., and Pande, P.K. (1988). Effect of bed and side roughness on dispersion in open channels. J. Hydraul. Eng. 114, 766.
    • (1988) J. Hydraul. Eng. , vol.114 , pp. 766
    • Magazine, M.K.1    Pathak, S.K.2    Pande, P.K.3
  • 34
    • 0016090052 scopus 로고
    • Simple method for predicting dispersion in streams
    • McQuivey, R.S., and Keefer, T.N. (1974). Simple method for predicting dispersion in streams. J. Environ. Eng. 100, 997.
    • (1974) J. Environ. Eng. , vol.100 , pp. 997
    • McQuivey, R.S.1    Keefer, T.N.2
  • 35
    • 67649963608 scopus 로고    scopus 로고
    • Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad
    • Noori, R., Abdoli, M.A., Ameri, A., and Jalili-Ghazizade, M. (2009a). Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad. Environ. Prog. 28, 249.
    • (2009) Environ. Prog. , vol.28 , pp. 249
    • Noori, R.1    Abdoli, M.A.2    Ameri, A.3    Jalili-Ghazizade, M.4
  • 36
    • 64049092449 scopus 로고    scopus 로고
    • Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transformneural network
    • Noori, R., Abdoli, M.A., Farokhnia, A., and Abbasi, M. (2009b). Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transformneural network. Expert Syst. Appl. 36, 9991.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9991
    • Noori, R.1    Abdoli, M.A.2    Farokhnia, A.3    Abbasi, M.4
  • 37
    • 67649416269 scopus 로고    scopus 로고
    • Comparison of ANN and PCA based multivariate linear regression applied to predict the weekly municipal solid waste generation in Tehran
    • Noori, R., Abdoli, M.A., Jalili-Ghazizade, M., and Samifard, R. (2009c). Comparison of ANN and PCA based multivariate linear regression applied to predict the weekly municipal solid waste generation in Tehran. Iran. J. Public Health 38, 74.
    • (2009) Iran. J. Public Health , vol.38 , pp. 74
    • Noori, R.1    Abdoli, M.A.2    Jalili-Ghazizade, M.3    Samifard, R.4
  • 38
    • 67649417415 scopus 로고    scopus 로고
    • Assessment of importance of water quality monitoring stations using principal component and factor analyses: A case study of the Karoon River
    • Noori, R., Kerachian, R., Khodadadi, A., and Shakibayinia, A. (2007). Assessment of importance of water quality monitoring stations using principal component and factor analyses: A case study of the Karoon River. J. Water Wastewater 63, 60.
    • (2007) J. Water Wastewater , vol.63 , pp. 60
    • Noori, R.1    Kerachian, R.2    Khodadadi, A.3    Shakibayinia, A.4
  • 40
    • 60249096813 scopus 로고    scopus 로고
    • Comparsion of different transport and dispersion of sediments in mard intake by FASTER model
    • October 16-17, Ahvaz, Iran
    • Sedighnezhad, H., Salehi, H., and Mohein, D. (2007). Comparsion of different transport and dispersion of sediments in mard intake by FASTER model. In: Proceeding of the 7th International Symposium River Engineering, October 16-17, Ahvaz, Iran, p. 45.
    • (2007) Proceeding of the 7th International Symposium River Engineering , pp. 45
    • Sedighnezhad, H.1    Salehi, H.2    Mohein, D.3
  • 41
    • 1842681576 scopus 로고    scopus 로고
    • Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams
    • Seo, I.W., and Bake, K.O. (2004). Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams. J. Hydraul. Eng. 130, 227.
    • (2004) J. Hydraul. Eng. , vol.130 , pp. 227
    • Seo, I.W.1    Bake, K.O.2
  • 42
    • 11644276139 scopus 로고    scopus 로고
    • Predicting longitudinal dispersion coefficient in natural streams
    • Seo, I.W., and Cheong, T.S. (1998). Predicting longitudinal dispersion coefficient in natural streams. J. Hydraul. Eng. 124, 25.
    • (1998) J. Hydraul. Eng. , vol.124 , pp. 25
    • Seo, I.W.1    Cheong, T.S.2
  • 44
    • 3142737988 scopus 로고    scopus 로고
    • Comment on Longitudinal dispersion coefficients in natural channels
    • Toprak, Z.F., Sen, Z., and Savci, M.E. (2004). Comment on Longitudinal dispersion coefficients in natural channels. Water Res. 38, 3139.
    • (2004) Water Res. , vol.38 , pp. 3139
    • Toprak, Z.F.1    Sen, Z.2    Savci, M.E.3
  • 45
    • 33644891019 scopus 로고    scopus 로고
    • Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
    • Tutmez, B., Hatipoglu, Z., and Kaymak, U. (2008). Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Comput. Geosci. 32, 421.
    • (2008) Comput. Geosci. , vol.32 , pp. 421
    • Tutmez, B.1    Hatipoglu, Z.2    Kaymak, U.3
  • 47
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Wang, W.J., Xu, Z.B., Lu, W.Z., and Zhang, X.Y. (2003). Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55, 643.
    • (2003) Neurocomputing , vol.55 , pp. 643
    • Wang, W.J.1    Xu, Z.B.2    Lu, W.Z.3    Zhang, X.Y.4
  • 48
    • 33751013311 scopus 로고    scopus 로고
    • Fault diagnosis of WWTP based on improved support vector machine
    • Zeng, G.M., Li, X.D., Jiang, R., Li, J.B., and Huang, G.H. (2006). Fault diagnosis of WWTP based on improved support vector machine. Environ. Eng. Sci. 23, 1044.
    • (2006) Environ. Eng. Sci. , vol.23 , pp. 1044
    • Zeng, G.M.1    Li, X.D.2    Jiang, R.3    Li, J.B.4    Huang, G.H.5
  • 49
    • 28844500372 scopus 로고    scopus 로고
    • Application of support vector machine (SVM) for prediction toxic activity of different data sets
    • Zhao, C.Y., Zhang, H.X., and Zhang, X.Y. (2006). Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology 217, 105.
    • (2006) Toxicology , vol.217 , pp. 105
    • Zhao, C.Y.1    Zhang, H.X.2    Zhang, X.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.