메뉴 건너뛰기




Volumn 13, Issue 2, 2011, Pages 391-403

Quantitative Non-Geometric Convergence Bounds for Independence Samplers

Author keywords

Convergence bounds; Independence sampler; Markov chain; MCMC

Indexed keywords


EID: 79954642392     PISSN: 13875841     EISSN: 15737713     Source Type: Journal    
DOI: 10.1007/s11009-009-9157-z     Document Type: Article
Times cited : (19)

References (24)
  • 1
    • 14544277112 scopus 로고    scopus 로고
    • Renewal theory and computable convergence rates for geometrically ergodic Markov chains
    • Baxendale PH (2005) Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann Appl Probab 15: 700-738.
    • (2005) Ann Appl Probab , vol.15 , pp. 700-738
    • Baxendale, P.H.1
  • 3
    • 0042376950 scopus 로고    scopus 로고
    • A simulation approach to convergence rates for Markov chain Monte Carlo algorithms
    • Cowles MK, Rosenthal JS (1998) A simulation approach to convergence rates for Markov chain Monte Carlo algorithms. Stat Comput 8: 115-124.
    • (1998) Stat Comput , vol.8 , pp. 115-124
    • Cowles, M.K.1    Rosenthal, J.S.2
  • 4
    • 14544282666 scopus 로고    scopus 로고
    • Quantitative bounds on convergence of time-inhomogeneous Markov chains
    • Douc R, Moulines E, Rosenthal JS (2004) Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann Appl Probab 14: 1643-1665.
    • (2004) Ann Appl Probab , vol.14 , pp. 1643-1665
    • Douc, R.1    Moulines, E.2    Rosenthal, J.S.3
  • 5
    • 47249094432 scopus 로고    scopus 로고
    • Computable convergence rates for sub-geometric ergodic Markov chains
    • Douc R, Moulines E, Soulier P (2007) Computable convergence rates for sub-geometric ergodic Markov chains. Bernoulli 13: 831-848.
    • (2007) Bernoulli , vol.13 , pp. 831-848
    • Douc, R.1    Moulines, E.2    Soulier, P.3
  • 7
    • 0037210788 scopus 로고    scopus 로고
    • Polynomial ergodicity of Markov transition kernels
    • Fort G, Moulines E (2003) Polynomial ergodicity of Markov transition kernels. Stoch Process Appl 103: 57-99.
    • (2003) Stoch Process Appl , vol.103 , pp. 57-99
    • Fort, G.1    Moulines, E.2
  • 8
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 9
    • 0036117479 scopus 로고    scopus 로고
    • Polynomial convergence rates of Markov chains
    • Jarner SF, Roberts GO (2002) Polynomial convergence rates of Markov chains. Ann Appl Probab 12: 224-247.
    • (2002) Ann Appl Probab , vol.12 , pp. 224-247
    • Jarner, S.F.1    Roberts, G.O.2
  • 10
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • Jones GL, Hobert JP (2001) Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Stat Sci 16: 312-334.
    • (2001) Stat Sci , vol.16 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 11
    • 24344493048 scopus 로고    scopus 로고
    • Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
    • Jones GL, Hobert JP (2004) Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann Stat 32: 784-817.
    • (2004) Ann Stat , vol.32 , pp. 784-817
    • Jones, G.L.1    Hobert, J.P.2
  • 12
    • 21344458535 scopus 로고    scopus 로고
    • Metropolized independent sampling with comparisons to rejection sampling and importance sampling
    • Liu J (1996) Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat Comput 6: 113-119.
    • (1996) Stat Comput , vol.6 , pp. 113-119
    • Liu, J.1
  • 13
    • 2142729827 scopus 로고    scopus 로고
    • Geometric ergodicity of van Dyk and Meng's algorithm for the multivariate Student's t model
    • Marchev D, Hobert JP (2004) Geometric ergodicity of van Dyk and Meng's algorithm for the multivariate Student's t model. J Am Stat Assoc 99: 228-238.
    • (2004) J Am Stat Assoc , vol.99 , pp. 228-238
    • Marchev, D.1    Hobert, J.P.2
  • 14
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • Mengersen KL, Tweedie RL (1996) Rates of convergence of the Hastings and Metropolis algorithms. Ann Stat 24: 101-121.
    • (1996) Ann Stat , vol.24 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 16
    • 0033233847 scopus 로고    scopus 로고
    • A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms
    • Roberts GO (1999) A note on acceptance rate criteria for CLTs for Metropolis-Hastings algorithms. J Appl Probab 36: 1210-1217.
    • (1999) J Appl Probab , vol.36 , pp. 1210-1217
    • Roberts, G.O.1
  • 17
    • 0040944354 scopus 로고    scopus 로고
    • Markov chain Monte Carlo: some practical implications of theoretical results (with discussion)
    • Roberts GO, Rosenthal JS (1998) Markov chain Monte Carlo: some practical implications of theoretical results (with discussion). Can J Stat 26: 5-31.
    • (1998) Can J Stat , vol.26 , pp. 5-31
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 18
    • 84890736685 scopus 로고    scopus 로고
    • General state space Markov chains and MCMC algorithms
    • Roberts GO, Rosenthal JS (2004) General state space Markov chains and MCMC algorithms. Probab Surv 1: 20-71.
    • (2004) Probab Surv , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 19
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
    • Roberts GO, Tweedie RL (1996) Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83: 95-110.
    • (1996) Biometrika , vol.83 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2
  • 20
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • Rosenthal JS (1995) Minorization conditions and convergence rates for Markov chain Monte Carlo. J Am Stat Assoc 90: 558-566.
    • (1995) J Am Stat Assoc , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 22
    • 3042638629 scopus 로고    scopus 로고
    • Quantitative convergence rates of Markov chains: a simple account
    • Rosenthal JS (2002) Quantitative convergence rates of Markov chains: a simple account. Electron Commun Probab 7: 123-128.
    • (2002) Electron Commun Probab , vol.7 , pp. 123-128
    • Rosenthal, J.S.1
  • 23
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discussion)
    • Tierney L (1994) Markov chains for exploring posterior distributions (with discussion). Ann Stat 22: 1701-1762.
    • (1994) Ann Stat , vol.22 , pp. 1701-1762
    • Tierney, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.