메뉴 건너뛰기




Volumn 13, Issue 3, 2007, Pages 831-848

Computable convergence rates for sub-geometric ergodic Markov chains

Author keywords

Markov chains; Rates of convergence; Stochastic monotonicity

Indexed keywords


EID: 47249094432     PISSN: 13507265     EISSN: None     Source Type: Journal    
DOI: 10.3150/07-BEJ5162     Document Type: Article
Times cited : (30)

References (27)
  • 1
    • 14544277112 scopus 로고    scopus 로고
    • Renewal theory and computable convergence rates for geometrically ergodic Markov chains
    • Baxendale, P.H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 700-738.
    • (2005) Ann. Appl. Probab , vol.15 , pp. 700-738
    • Baxendale, P.H.1
  • 2
    • 0029404157 scopus 로고
    • Stability and convergence of moments for multiclass queueing networks via fluid limit models
    • Dai, J.G. and Meyn, S.P. (1995). Stability and convergence of moments for multiclass queueing networks via fluid limit models. IEEE Trans. Automat. Control 40 1889-1904.
    • (1995) IEEE Trans. Automat. Control , vol.40 , pp. 1889-1904
    • Dai, J.G.1    Meyn, S.P.2
  • 3
    • 21244433219 scopus 로고    scopus 로고
    • Practical drift conditions for subgeometric rates of convergence
    • Douc, R., Fort, G., Moulines, E. and Soulier, P. (2004a). Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 1353-1377.
    • (2004) Ann. Appl. Probab , vol.14 , pp. 1353-1377
    • Douc, R.1    Fort, G.2    Moulines, E.3    Soulier, P.4
  • 4
    • 14544282666 scopus 로고    scopus 로고
    • Quantitative bounds for geometric convergence rates of Markov chains
    • Douc, R., Moulines, E. and Rosenthal, J. (2004b). Quantitative bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 14 1643-1665.
    • (2004) Ann. Appl. Probab , vol.14 , pp. 1643-1665
    • Douc, R.1    Moulines, E.2    Rosenthal, J.3
  • 5
    • 47249117740 scopus 로고    scopus 로고
    • Fort, G. (2001). Contrôle explicite d'ergodicité de chaines de Markov: applications à l'analyse de convergence de l'algorithme Monte-Carlo EM. Ph.D. thesis, Université de Paris VI. INIST Number
    • Fort, G. (2001). Contrôle explicite d'ergodicité de chaines de Markov: applications à l'analyse de convergence de l'algorithme Monte-Carlo EM. Ph.D. thesis, Université de Paris VI. INIST Number
  • 6
    • 0000580574 scopus 로고    scopus 로고
    • V-subgeometric ergodicity for a Hastings-Metropolis algorithm
    • Fort, G. and Moulines, E. (2000). V-subgeometric ergodicity for a Hastings-Metropolis algorithm. Statist. Probab. Lett. 49 401-410.
    • (2000) Statist. Probab. Lett , vol.49 , pp. 401-410
    • Fort, G.1    Moulines, E.2
  • 7
    • 0037210788 scopus 로고    scopus 로고
    • Polynomial ergodicity of Markov transition kernels
    • Fort, G. and Moulines, E. (2003). Polynomial ergodicity of Markov transition kernels. Stochastic Process. Appl. 103 57-99.
    • (2003) Stochastic Process. Appl , vol.103 , pp. 57-99
    • Fort, G.1    Moulines, E.2
  • 9
    • 0036117479 scopus 로고    scopus 로고
    • Polynomial convergence rates of Markov chains
    • Jarner, S.F. and Roberts, G.O. (2002). Polynomial convergence rates of Markov chains. Ann. Appl. Probab. 12 224-247.
    • (2002) Ann. Appl. Probab , vol.12 , pp. 224-247
    • Jarner, S.F.1    Roberts, G.O.2
  • 10
    • 33644555699 scopus 로고    scopus 로고
    • Sub-exponential mixing rate for a class of Markov chains
    • Klokov, S.A. and Veretennikov, A.Y. (2004). Sub-exponential mixing rate for a class of Markov chains. Math. Commun. 9 9-26.
    • (2004) Math. Commun , vol.9 , pp. 9-26
    • Klokov, S.A.1    Veretennikov, A.Y.2
  • 11
    • 0002050842 scopus 로고
    • On coupling of discrete renewal sequences
    • Lindvall, T. (1979). On coupling of discrete renewal sequences. Z. Wahrsch. Verw. Gebiete 48 57-70.
    • (1979) Z. Wahrsch. Verw. Gebiete , vol.48 , pp. 57-70
    • Lindvall, T.1
  • 13
    • 0030538347 scopus 로고    scopus 로고
    • Computable exponential convergence rates for stochastically ordered Markov processes
    • Lund, R.B., Meyn, S.P. and Tweedie, R. (1996). Computable exponential convergence rates for stochastically ordered Markov processes. Ann. Appl. Probab. 6 218-237.
    • (1996) Ann. Appl. Probab , vol.6 , pp. 218-237
    • Lund, R.B.1    Meyn, S.P.2    Tweedie, R.3
  • 14
    • 0030086282 scopus 로고    scopus 로고
    • Geometric convergence rates for stochastically ordered Markov chains
    • Lund, R.B. and Tweedie, R.L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res. 21 182-194.
    • (1996) Math. Oper. Res , vol.21 , pp. 182-194
    • Lund, R.B.1    Tweedie, R.L.2
  • 16
    • 0000566364 scopus 로고
    • Computable bounds for convergence rates of Markov chains
    • Meyn, S.P. and Tweedie, R.L. (1994). Computable bounds for convergence rates of Markov chains. Ann. Appl. Probab. 4 991-1011.
    • (1994) Ann. Appl. Probab , vol.4 , pp. 991-1011
    • Meyn, S.P.1    Tweedie, R.L.2
  • 17
    • 0010862224 scopus 로고
    • The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory
    • Nummelin, E. and Tuominen, P. (1983). The rate of convergence in Orey's theorem for Harris recurrent Markov chains with applications to renewal theory. Stochastic Process. Appl. 15 295-311.
    • (1983) Stochastic Process. Appl , vol.15 , pp. 295-311
    • Nummelin, E.1    Tuominen, P.2
  • 18
    • 84890736685 scopus 로고    scopus 로고
    • General state space Markov chains and MCMC algorithms
    • Roberts, G.O. and Rosenthal, J.S. (2004). General state space Markov chains and MCMC algorithms. Probab. Surv. 1 20-71.
    • (2004) Probab. Surv , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 19
    • 0001514831 scopus 로고    scopus 로고
    • Bounds on regeneration times and convergence rates for Markov chains
    • Roberts, G.O. and Tweedie, R.L. (1999). Bounds on regeneration times and convergence rates for Markov chains. Stochastic Process. Appl. 80 211-229.
    • (1999) Stochastic Process. Appl , vol.80 , pp. 211-229
    • Roberts, G.O.1    Tweedie, R.L.2
  • 20
    • 0034196166 scopus 로고    scopus 로고
    • Rates of convergence of stochastically monotone and continuous time Markov models
    • Roberts, G.O. and Tweedie, R.L. (2000). Rates of convergence of stochastically monotone and continuous time Markov models. J. Appl. Probab. 37 359-373.
    • (2000) J. Appl. Probab , vol.37 , pp. 359-373
    • Roberts, G.O.1    Tweedie, R.L.2
  • 21
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • Rosenthal, J.S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566.
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 22
    • 0031700503 scopus 로고    scopus 로고
    • Computing queue-length distributions for power-law queues
    • Roughan, M., Veitch, D. and Rumsewicz, M. (1998). Computing queue-length distributions for power-law queues. In Proceedings IEEE INFOCOM '98 1 356-363.
    • (1998) Proceedings IEEE INFOCOM '98 , vol.1 , pp. 356-363
    • Roughan, M.1    Veitch, D.2    Rumsewicz, M.3
  • 23
    • 47249113666 scopus 로고    scopus 로고
    • Scott, D.J. and Tweedie, R.L. (1996). Explicit rates of convergence of stochastically ordered Markov chains. Athens Conference on Applied Probability and Time Series Analysis 1. Applied Probability in Honor of J. M. Gani. Lecture Notes in Statist. 114 176-191. New York: Springer.
    • Scott, D.J. and Tweedie, R.L. (1996). Explicit rates of convergence of stochastically ordered Markov chains. Athens Conference on Applied Probability and Time Series Analysis 1. Applied Probability in Honor of J. M. Gani. Lecture Notes in Statist. 114 176-191. New York: Springer.
  • 25
    • 0001153782 scopus 로고
    • Subgeometric rates of convergence of f-ergodic Markov chains
    • Tuominen, P. and Tweedie, R. (1994). Subgeometric rates of convergence of f-ergodic Markov chains. Adv. in Appl. Probab. 26 775-798.
    • (1994) Adv. in Appl. Probab , vol.26 , pp. 775-798
    • Tuominen, P.1    Tweedie, R.2
  • 26
    • 0031256573 scopus 로고    scopus 로고
    • On polynomial mixing bounds for stochastic differential equations
    • Veretennikov, A. (1997). On polynomial mixing bounds for stochastic differential equations. Stochastic Process. Appl. 70 115-127.
    • (1997) Stochastic Process. Appl , vol.70 , pp. 115-127
    • Veretennikov, A.1
  • 27
    • 0033622220 scopus 로고    scopus 로고
    • On polynomial mixing and the rate of convergence for stochastic differential and difference equations
    • Veretennikov, A. (2000). On polynomial mixing and the rate of convergence for stochastic differential and difference equations. Theory Probab. Appl. 44 361-374.
    • (2000) Theory Probab. Appl , vol.44 , pp. 361-374
    • Veretennikov, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.