메뉴 건너뛰기




Volumn 31, Issue 2, 2011, Pages 308-314

Application of an artificial neural network to predict postinduction hypotension during general anesthesia

Author keywords

Anesthesiology; Artificial neural networks; Logistic regression models; ROC curve analysis

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; FEASIBILITY STUDY; GENERAL ANESTHESIA; HUMAN; HYPOTENSION; MIDDLE AGED; VALIDATION STUDY;

EID: 79953836782     PISSN: 0272989X     EISSN: 1552681X     Source Type: Journal    
DOI: 10.1177/0272989X10379648     Document Type: Article
Times cited : (32)

References (29)
  • 2
    • 10944222205 scopus 로고    scopus 로고
    • Anesthetic management and one-year mortality after noncardiac surgery
    • DOI 10.1213/01.ANE.0000147519.82841.5E
    • Monk TG, Saini V, Weldon C, Sigl JC. Anesthetic management and 1-year mortality after noncardiac surgery. Anesth Analg. 2005;100:4-10. (Pubitemid 40013594)
    • (2005) Anesthesia and Analgesia , vol.100 , Issue.1 , pp. 4-10
    • Monk, T.G.1    Saini, V.2    Weldon, B.C.3    Sigl, J.C.4
  • 4
    • 0032836514 scopus 로고    scopus 로고
    • Intraoperative hemodynamic predictors of mortality, stroke, and myocardial infarction after coronary artery bypass surgery
    • DOI 10.1097/00000539-199910000-00002
    • Reich DL, Bodian CA, Krol M, et al. Intraoperative hemodynamic predictors of mortality, stroke and myocardial infarction following coronary artery bypass surgery. Anesth Analg. 1999;89: 814-22. (Pubitemid 29458450)
    • (1999) Anesthesia and Analgesia , vol.89 , Issue.4 , pp. 814-822
    • Reich, D.L.1    Bodian, C.A.2    Krol, M.3    Kuroda, M.4    Osinski, T.5    Thys, D.M.6
  • 6
    • 10944223457 scopus 로고    scopus 로고
    • Autonomic mechanisms in the age-related hypotensive effect of propofol
    • DOI 10.1213/01.ANE.0000140242.25232.41
    • Memtsoudis SG, Andrew HS, Heerdt PM. Autonomic mechanisms in the age-related hypotensive effect of propofol. Anesth Analg. 2005;100:111-5. (Pubitemid 40013614)
    • (2005) Anesthesia and Analgesia , vol.100 , Issue.1 , pp. 111-115
    • Memtsoudis, S.G.1    The, A.H.S.2    Heerdt, P.M.3
  • 7
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • DOI 10.1177/0272989X9601600409
    • Penny W, Frost D. Neural networks in clinical medicine. Med Decis Making. 1996;16:386-98. (Pubitemid 26337641)
    • (1996) Medical Decision Making , vol.16 , Issue.4 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 8
    • 0027495376 scopus 로고
    • Neural network in the clinical diagnosis of acute pulmonary embolism
    • Patil S, Henry JW, Rubenfire M, Stein PD. Neural network in the clinical diagnosis of acute pulmonary embolism. Chest. 1993;104:1685-9. (Pubitemid 23360091)
    • (1993) Chest , vol.104 , Issue.6 , pp. 1685-1689
    • Patil, S.1    Henry, J.W.2    Rubenfire, M.3    Stein, P.D.4
  • 9
    • 0037351361 scopus 로고    scopus 로고
    • Prediction of community-acquired pneumonia using artificial neural networks
    • DOI 10.1177/0272989X03251247
    • Heckerling PS, Gerber BS, Tape TG, Wigton RS. Prediction of community-acquired pneumonia using artificial neural networks. Med Decis Making. 2003;23:112-21. (Pubitemid 36373393)
    • (2003) Medical Decision Making , vol.23 , Issue.2 , pp. 112-121
    • Heckerling, P.S.1    Gerber, B.S.2    Tape, T.G.3    Wigton, R.S.4
  • 10
    • 61349119390 scopus 로고    scopus 로고
    • Artificial neural network to predict skeletal metastasis in patients with prostate cancer
    • Chiu JS, Wang YF, Su YC, Wei LH, Liao JG, Li YC. Artificial neural network to predict skeletal metastasis in patients with prostate cancer. J Med Syst. 2009;33:91-100.
    • (2009) J Med Syst , vol.33 , pp. 91-100
    • Chiu, J.S.1    Wang, Y.F.2    Su, Y.C.3    Wei, L.H.4    Liao, J.G.5    Li, Y.C.6
  • 11
    • 0032191932 scopus 로고    scopus 로고
    • ECG pattern recognition and classification using non-linear transformations and neural networks: A review
    • DOI 10.1016/S1386-5056(98)00138-5, PII S1386505698001385
    • Maglaveras N, Stamkopoulos T, Diamantaras K, Pappas C, Strintzis M. ECG pattern recognition and classification using nonlinear transformations and neural networks: a review. Int J Med Inform. 1998;52:191-208. (Pubitemid 28529655)
    • (1998) International Journal of Medical Informatics , vol.52 , Issue.1-3 , pp. 191-208
    • Maglaveras, N.1    Stamkopoulos, T.2    Diamantaras, K.3    Pappas, C.4    Strintzis, M.5
  • 12
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • DOI 10.1016/j.cmpb.2004.10.009
    • Subasi A, Erçelebi E. Classification of EEG signals using neural network and logistic regression. Comput Meth Prog Biomed. 2005;78:87-99. (Pubitemid 40575687)
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 13
    • 0033969016 scopus 로고    scopus 로고
    • Neural network modeling for surgical decisions on traumatic brain injury patients
    • DOI 10.1016/S1386-5056(99)00054-4, PII S1386505699000544
    • Li YC, Liu L, Chiu WT, Jian WS. Neural network modeling for surgical decisions on traumatic brain injury patients. Int J Med Inform. 2000;57:1-9. (Pubitemid 30069902)
    • (2000) International Journal of Medical Informatics , vol.57 , Issue.1 , pp. 1-9
    • Li, Y.-C.1    Liu, L.2    Chiu, W.-T.3    Jian, W.-S.4
  • 14
    • 0036363091 scopus 로고    scopus 로고
    • Neural network modelling to predict the hypnotic effect of propofol bolus induction
    • Lin CS, Li YC, Mok MS, Wu CC, Chiu HW, Lin YH. Neural network modelling to predict the hypnotic effect of propofol bolus induction. Proc AMIA Symp. 2002;450-3.
    • (2002) Proc AMIA Symp , pp. 450-453
    • Lin, C.S.1    Li, Y.C.2    Mok, M.S.3    Wu, C.C.4    Chiu, H.W.5    Lin, Y.H.6
  • 15
    • 52949083181 scopus 로고    scopus 로고
    • Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks
    • Lin CS, Chiu JS, et al. Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks. Comput Meth Prog Biomed. 2008;92:193-7.
    • (2008) Comput Meth Prog Biomed , vol.92 , pp. 193-197
    • Lin, C.S.1    Chiu, J.S.2
  • 16
    • 44949169359 scopus 로고    scopus 로고
    • Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data
    • Lin CC, Wan YC, Chen JY, et al. Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data. Comput Meth Prog Biomed. 2008;91:91-9.
    • (2008) Comput Meth Prog Biomed , vol.91 , pp. 91-99
    • Lin, C.C.1    Wan, Y.C.2    Chen, J.Y.3
  • 17
    • 77950326901 scopus 로고    scopus 로고
    • Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: Artificial neural network and logistic regression models
    • Lin CC, Bai YM, Chen JY, et al. Easy and low-cost identification of metabolic syndrome in patients treated with second-generation antipsychotics: artificial neural network and logistic regression models. J Clin Psychiatry. 2010;71:225-34.
    • (2010) J Clin Psychiatry , vol.71 , pp. 225-234
    • Lin, C.C.1    Bai, Y.M.2    Chen, J.Y.3
  • 18
    • 0026775675 scopus 로고
    • Review of neural network application in medical imaging and signal processing
    • Miller AS, Blott BH, Hames TK. Review of neural network application in medical imaging and signal processing. Med Biol Eng Comput. 1992;30:449-64.
    • (1992) Med Biol Eng Comput , vol.30 , pp. 449-464
    • Miller, A.S.1    Blott, B.H.2    Hames, T.K.3
  • 19
    • 0020063002 scopus 로고
    • A review of goodness of fit statistics for use in the development of logistic regression models
    • Lemeshow S, Hosmer DW. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol. 1982;115:92-106. (Pubitemid 12205725)
    • (1982) American Journal of Epidemiology , vol.115 , Issue.1 , pp. 92-106
    • Lemeshow, S.1    Hosmer Jr., D.W.2
  • 20
    • 0031006441 scopus 로고    scopus 로고
    • A comparison of goodness-of-fit tests for the logistic regression model
    • DOI 10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2- O
    • Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med. 1997;16:965-80. (Pubitemid 27198985)
    • (1997) Statistics in Medicine , vol.16 , Issue.9 , pp. 965-980
    • Hosmer, D.W.1    Hosmer, T.2    Le Cessie, S.3    Lemeshow, S.4
  • 21
    • 33745106918 scopus 로고    scopus 로고
    • Neural network modeling to stratify peritoneal membrane transporter in predialytic patients
    • Chen CA., Lin SH, Hsu Y J, Li YC, Wang YF, Chiu JS. Neural network modeling to stratify peritoneal membrane transporter in predialytic patients. Intern Med. 2006;45:663-4.
    • (2006) Intern Med , vol.45 , pp. 663-664
    • Chen, C.A.1    Lin, S.H.2    Hsu Y, J.3    Li, Y.C.4    Wang, Y.F.5    Chiu, J.S.6
  • 22
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • DOI 10.1016/S1532-0464(03)00034-0
    • Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: A methodology review. J Biomed Inform. 2002;35:352-9. (Pubitemid 36951935)
    • (2002) Journal of Biomedical Informatics , vol.35 , Issue.5-6 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 23
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley JA, McNeil BJ. A method of comparing the area under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839-43. (Pubitemid 13033817)
    • (1983) Radiology , vol.148 , Issue.3 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 24
    • 0021203016 scopus 로고
    • Statistical approaches to the analysis of receiver operating characteristic (ROC) curves
    • McNeil BJ, Hanley JA. Statistical approaches to the analysis of receiver operating characteristic (ROC) curves. Med Decis Making. 1984;4:137-50. (Pubitemid 14001462)
    • (1984) Medical Decision Making , vol.4 , Issue.2 , pp. 137-150
    • McNeil, B.J.1    Hanley, J.A.2
  • 25
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong E, DeLong D, Clarke-Pearson D. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837-45.
    • (1988) Biometrics , vol.44 , pp. 837-845
    • DeLong, E.1    DeLong, D.2    Clarke-Pearson, D.3
  • 26
    • 33646252050 scopus 로고    scopus 로고
    • Pre-operative measurement of heart rate variability predicts hypotension during general anesthesia
    • Huang CJ, Kuok CH, Kuo TB, Hsu YW, Tsai PS. Pre-operative measurement of heart rate variability predicts hypotension during general anesthesia. Acta Anaesthesiol Scand. 2006;50:542-8.
    • (2006) Acta Anaesthesiol Scand , vol.50 , pp. 542-548
    • Huang, C.J.1    Kuok, C.H.2    Kuo, T.B.3    Hsu, Y.W.4    Tsai, P.S.5
  • 27
    • 38349075751 scopus 로고    scopus 로고
    • Does heart rate variability predict hypotension and bradycardia after induction of general anaesthesia in high risk cardiovascular patients?
    • Hanss R, Renner J, Ilies C, et al. Does heart rate variability predict hypotension and bradycardia after induction of general anaesthesia in high risk cardiovascular patients? Anaesthesia. 2008;63:129-35.
    • (2008) Anaesthesia , vol.63 , pp. 129-135
    • Hanss, R.1    Renner, J.2    Ilies, C.3
  • 28
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocardial infarction
    • Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;115:843-8.
    • (1991) Ann Intern Med , vol.115 , pp. 843-848
    • Baxt, W.G.1
  • 29
    • 0028242397 scopus 로고
    • A neural network trained to identify the presence of myocardial infarction bases some decisions on clinical associations that differ from accepted clinical teaching
    • DOI 10.1177/0272989X9401400303
    • Baxt WG. A neural network trained to identify the presence of myocardial infarction bases some decisions on clinical associations that differ from accepted clinical teaching. Med Decis Making. 1994;14:217-22. (Pubitemid 24206346)
    • (1994) Medical Decision Making , vol.14 , Issue.3 , pp. 217-222
    • Baxt, W.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.