-
1
-
-
0026530466
-
Yeast RAD14 and human Xeroderma pigmentosum group A DNA-repair genes encode homologous proteins
-
Bankmann M., Prakash L., Prakash S. Yeast RAD14 and human Xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature 1992, 355:555-558.
-
(1992)
Nature
, vol.355
, pp. 555-558
-
-
Bankmann, M.1
Prakash, L.2
Prakash, S.3
-
2
-
-
39549114009
-
Differential regulation of the cellular response to DNA double-strand breaks in G1
-
Barlow J.H., Lisby M., Rothstein R. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 2008, 30:73-85.
-
(2008)
Mol Cell
, vol.30
, pp. 73-85
-
-
Barlow, J.H.1
Lisby, M.2
Rothstein, R.3
-
3
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
-
(1976)
Anal Biochem
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
4
-
-
12844278880
-
Rejoining of DNA double-strand breaks as a function of overhang length
-
Daley J.M., Wilson T.E. Rejoining of DNA double-strand breaks as a function of overhang length. Mol Cell Biol 2005, 25:896-906.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 896-906
-
-
Daley, J.M.1
Wilson, T.E.2
-
5
-
-
0037705461
-
Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes
-
Dong Z., Fasullo M. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res 2003, 31:2576-2585.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 2576-2585
-
-
Dong, Z.1
Fasullo, M.2
-
6
-
-
0026583875
-
Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated
-
Fishman-Lobell J., Rudin N., Haber J.E. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 1992, 12:1292-1303.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 1292-1303
-
-
Fishman-Lobell, J.1
Rudin, N.2
Haber, J.E.3
-
7
-
-
0004228157
-
-
ASM Press, Washington, DC
-
Friedberg E.C., Walker G.C., Siede W., Wood R.D., Schultz R.A., et al. DNA repair and mutagenesis 2005, ASM Press, Washington, DC.
-
(2005)
DNA repair and mutagenesis
-
-
Friedberg, E.C.1
Walker, G.C.2
Siede, W.3
Wood, R.D.4
Schultz, R.A.5
-
8
-
-
31344443061
-
Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo
-
Guzder S.N., Sommers C.H., Prakash L., Prakash S. Complex formation with damage recognition protein Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in nucleotide excision repair in vivo. Mol Cell Biol 2006, 26:1135-1141.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 1135-1141
-
-
Guzder, S.N.1
Sommers, C.H.2
Prakash, L.3
Prakash, S.4
-
9
-
-
0028927573
-
RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae
-
Ivanov E.L., Haber J.E. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 1995, 15:2245-2251.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 2245-2251
-
-
Ivanov, E.L.1
Haber, J.E.2
-
10
-
-
0030000946
-
Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
-
Ivanov E.L., Sugawara N., Fishman-Lobell J., Haber J.E. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 1996, 142:693-704.
-
(1996)
Genetics
, vol.142
, pp. 693-704
-
-
Ivanov, E.L.1
Sugawara, N.2
Fishman-Lobell, J.3
Haber, J.E.4
-
11
-
-
0027509706
-
Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae
-
Kadyk L.C., Hartwell L.H. Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics 1993, 133:469-487.
-
(1993)
Genetics
, vol.133
, pp. 469-487
-
-
Kadyk, L.C.1
Hartwell, L.H.2
-
12
-
-
0024097681
-
Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae
-
Klein H.L. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics 1988, 120:367-377.
-
(1988)
Genetics
, vol.120
, pp. 367-377
-
-
Klein, H.L.1
-
13
-
-
10344263324
-
Recombination proteins in yeast
-
Krogh B.O., Symington L.S. Recombination proteins in yeast. Annu Rev Genet 2004, 38:233-271.
-
(2004)
Annu Rev Genet
, vol.38
, pp. 233-271
-
-
Krogh, B.O.1
Symington, L.S.2
-
14
-
-
4544281398
-
Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M., Barlow J.H., Burgess R.C., Rothstein R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 2004, 118:699-713.
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
Barlow, J.H.2
Burgess, R.C.3
Rothstein, R.4
-
15
-
-
0242468933
-
Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
-
Ma J.L., Kim E.M., Haber J.E., Lee S.E. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol Cell Biol 2003, 23:8820-8828.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 8820-8828
-
-
Ma, J.L.1
Kim, E.M.2
Haber, J.E.3
Lee, S.E.4
-
16
-
-
38049000832
-
Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step
-
Mocquet V., Laine J.P., Riedl T., Yajin Z., Lee M.Y., et al. Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J 2008, 27:155-167.
-
(2008)
EMBO J
, vol.27
, pp. 155-167
-
-
Mocquet, V.1
Laine, J.P.2
Riedl, T.3
Yajin, Z.4
Lee, M.Y.5
-
17
-
-
71049127354
-
Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae
-
Moore D., Karlin J., González-Barrera S., Mardiros A., Lisby M., et al. Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae. Nucl Acids Res 2009, 37:6429-6438.
-
(2009)
Nucl Acids Res
, vol.37
, pp. 6429-6438
-
-
Moore, D.1
Karlin, J.2
González-Barrera, S.3
Mardiros, A.4
Lisby, M.5
-
18
-
-
0036270546
-
Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR
-
Reid R.J., Lisby M., Rothstein R. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol 2002, 350:258-277.
-
(2002)
Methods Enzymol
, vol.350
, pp. 258-277
-
-
Reid, R.J.1
Lisby, M.2
Rothstein, R.3
-
19
-
-
0023784486
-
RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination
-
Schiestl R.H., Prakash S. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol Cell Biol 1988, 8:3619-3626.
-
(1988)
Mol Cell Biol
, vol.8
, pp. 3619-3626
-
-
Schiestl, R.H.1
Prakash, S.2
-
20
-
-
0025370209
-
RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination
-
Schiestl R.H., Prakash S. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol Cell Biol 1990, 10:2485-2491.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 2485-2491
-
-
Schiestl, R.H.1
Prakash, S.2
-
21
-
-
62149151774
-
Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus
-
Solimando L., Luijsterburg M.S., Vecchio L., Vermeulen W., van Driel R., et al. Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci 2009, 122:83-91.
-
(2009)
J Cell Sci
, vol.122
, pp. 83-91
-
-
Solimando, L.1
Luijsterburg, M.S.2
Vecchio, L.3
Vermeulen, W.4
van Driel, R.5
-
22
-
-
0024977417
-
Elevated recombination rates in transcriptionally active DNA
-
Thomas B.J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell 1989, 56:619-630.
-
(1989)
Cell
, vol.56
, pp. 619-630
-
-
Thomas, B.J.1
Rothstein, R.2
-
23
-
-
0030050644
-
Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant
-
Verhage R.A., Zeeman A.M., Lombaerts M., van de Putte P., Brouwer J. Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant. Mutat Res 1996, 362:155-165.
-
(1996)
Mutat Res
, vol.362
, pp. 155-165
-
-
Verhage, R.A.1
Zeeman, A.M.2
Lombaerts, M.3
van de Putte, P.4
Brouwer, J.5
-
24
-
-
17944361949
-
Sequential assembly of the nucleotide excision repair factors in vivo
-
Volker M., Mone M.J., Karmakar P., van Hoffen A., Schul W., et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol Cell 2001, 8:213-224.
-
(2001)
Mol Cell
, vol.8
, pp. 213-224
-
-
Volker, M.1
Mone, M.J.2
Karmakar, P.3
van Hoffen, A.4
Schul, W.5
-
25
-
-
0032161269
-
A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
-
Zhao X., Muller E.G., Rothstein R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 1998, 2:329-340.
-
(1998)
Mol Cell
, vol.2
, pp. 329-340
-
-
Zhao, X.1
Muller, E.G.2
Rothstein, R.3
|