메뉴 건너뛰기




Volumn 27, Issue 7, 2011, Pages 946-952

Classifying short gene expression time-courses with Bayesian estimation of piecewise constant functions

Author keywords

[No Author keywords available]

Indexed keywords

TOXIN;

EID: 79953295361     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr037     Document Type: Article
Times cited : (13)

References (31)
  • 1
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Bar-Joseph,Z. (2004) Analyzing time series gene expression data. Bioinformatics, 20, 2493-2503.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 2
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum,L.E. et al. (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41, 164-171.
    • (1970) Ann. Math. Statist. , vol.41 , pp. 164-171
    • Baum, L.E.1
  • 3
    • 59649119722 scopus 로고    scopus 로고
    • Timing of gene expression responses to environmental changes
    • Chechik,G. and Koller,D. (2009) Timing of gene expression responses to environmental changes. J. Comput. Biol., 16, 279-290.
    • (2009) J. Comput. Biol. , vol.16 , pp. 279-290
    • Chechik, G.1    Koller, D.2
  • 4
    • 19544375816 scopus 로고    scopus 로고
    • The graphical query language: a tool for analysis of gene expression time-courses
    • Costa,I.G. et al. (2005) The graphical query language: a tool for analysis of gene expression time-courses. Bioinformatics, 21, 2544-2545.
    • (2005) Bioinformatics , vol.21 , pp. 2544-2545
    • Costa, I.G.1
  • 5
    • 66349133214 scopus 로고    scopus 로고
    • Constrained mixture estimation for analysis and robust classification of clinical time series
    • Costa,I.G. et al. (2009) Constrained mixture estimation for analysis and robust classification of clinical time series. Bioinformatics, 25, i6-i14.
    • (2009) Bioinformatics , vol.25
    • Costa, I.G.1
  • 6
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover,T. and Hart,P. (1967) Nearest neighbor pattern classification. IEEE Trans. Inf. Theory, 13, 21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 8
    • 0036081355 scopus 로고    scopus 로고
    • Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
    • Edgar,R. et al. (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res., 30, 207-210.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 207-210
    • Edgar, R.1
  • 9
    • 51649126841 scopus 로고    scopus 로고
    • Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma
    • Ellis,L. et al. (2008) Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin. Cancer Res., 14, 4500-4510.
    • (2008) Clin. Cancer Res. , vol.14 , pp. 4500-4510
    • Ellis, L.1
  • 10
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • Ernst,J. et al. (2005) Clustering short time series gene expression data. Bioinformatics, 21 (Suppl. 1), i159-i168.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ernst, J.1
  • 11
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? which clustering method? answers via model-based cluster analysis
    • Fraley,C. and Raftery,A.E. (1998) How many clusters? which clustering method? answers via model-based cluster analysis. Comput. J., 41, 578-588.
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 12
    • 0033637153 scopus 로고    scopus 로고
    • Genomic expression programs in the response of yeast cells to environmental changes
    • Gasch,A.P. et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell, 11, 4241-4257.
    • (2000) Mol. Biol. Cell. , vol.11 , pp. 4241-4257
    • Gasch, A.P.1
  • 13
    • 70349185347 scopus 로고    scopus 로고
    • Transcription dynamics
    • Hager,G.L. et al. (2009) Transcription dynamics. Mol. Cell, 35, 741-753.
    • (2009) Mol. Cell. , vol.35 , pp. 741-753
    • Hager, G.L.1
  • 14
    • 20144378474 scopus 로고    scopus 로고
    • Edge: a centralized resource for the comparison, analysis, and distribution of toxicogenomic information
    • Hayes,K.R. et al. (2005) Edge: a centralized resource for the comparison, analysis, and distribution of toxicogenomic information. Mol. Pharmacol., 67, 1360-1368.
    • (2005) Mol. Pharmacol. , vol.67 , pp. 1360-1368
    • Hayes, K.R.1
  • 15
    • 34248363540 scopus 로고    scopus 로고
    • A patient-gene model for temporal expression profiles in clinical studies
    • Kaminski,N. and Bar-Joseph,Z. (2007) A patient-gene model for temporal expression profiles in clinical studies. J. Comput. Biol., 14, 324-338.
    • (2007) J. Comput. Biol. , vol.14 , pp. 324-338
    • Kaminski, N.1    Bar-Joseph, Z.2
  • 16
    • 34247200577 scopus 로고    scopus 로고
    • The atgenexpress global stress expression data set: protocols, evaluation and model data analysis of uv-b light, drought and cold stress responses
    • Kilian,J. et al. (2007) The atgenexpress global stress expression data set: protocols, evaluation and model data analysis of uv-b light, drought and cold stress responses. Plant J., 50, 347-363.
    • (2007) Plant J , vol.50 , pp. 347-363
    • Kilian, J.1
  • 17
    • 46249094886 scopus 로고    scopus 로고
    • Alignment and classification of time series gene expression in clinical studies
    • Lin,T.-H. et al. (2008) Alignment and classification of time series gene expression in clinical studies. Bioinformatics, 24, i147-i155.
    • (2008) Bioinformatics , vol.24
    • Lin, T.-H.1
  • 18
    • 0032076034 scopus 로고    scopus 로고
    • Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping
    • Nielsen,N.V. et al. (1998) Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J. Chromatogr. A, 805, 17-35.
    • (1998) J. Chromatogr. A , vol.805 , pp. 17-35
    • Nielsen, N.V.1
  • 19
    • 47549106852 scopus 로고    scopus 로고
    • Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator
    • Pegg,A.E. (2008) Spermidine/spermine-N1-acetyltransferase: a key metabolic regulator. Am. J. Physiol. Endocrinol. Metab., 294, E995-E1010.
    • (2008) Am. J. Physiol. Endocrinol. Metab. , vol.294
    • Pegg, A.E.1
  • 20
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner,L.R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, 257-285.
    • (1989) Proc. IEEE , vol.77 , pp. 257-285
    • Rabiner, L.R.1
  • 21
    • 38149065301 scopus 로고    scopus 로고
    • Transcription factor target prediction using multiple short expression time series from arabidopsis thaliana
    • Redestig,H. et al. (2007) Transcription factor target prediction using multiple short expression time series from arabidopsis thaliana. BMC Bioinformatics, 8, 454.
    • (2007) BMC Bioinformatics , vol.8 , pp. 454
    • Redestig, H.1
  • 22
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • Sakoe,H. and Chiba,S. (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sig. Proces., 26, 43-49.
    • (1978) IEEE Trans. Acoust. Speech Sig. Proces. , vol.26 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 23
    • 4944252468 scopus 로고    scopus 로고
    • Using Hidden Markov Models to analyze gene expression time course data
    • Schliep,A. et al. (2003) Using Hidden Markov Models to analyze gene expression time course data. Bioinformatics, 19, (Suppl. 1), i255-i263.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1
    • Schliep, A.1
  • 24
    • 19544393245 scopus 로고    scopus 로고
    • Robust inference of groups in gene expression time-courses using mixtures of HMMs
    • Schliep,A. et al. (2004) Robust inference of groups in gene expression time-courses using mixtures of HMMs. Bioinformatics, 20, (Suppl. 1), i283-i289.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Schliep, A.1
  • 26
    • 34147094762 scopus 로고    scopus 로고
    • Inferring pairwise regulatory relationships from multiple time series datasets
    • Shi,Y. et al. (2007) Inferring pairwise regulatory relationships from multiple time series datasets. Bioinformatics, 23, 755-763.
    • (2007) Bioinformatics , vol.23 , pp. 755-763
    • Shi, Y.1
  • 27
    • 69249232495 scopus 로고    scopus 로고
    • Fast multisegment alignments for temporal expression profiles
    • Smith,A.A. and Craven,M. (2008) Fast multisegment alignments for temporal expression profiles. Comput. Syst. Bioinformatics Conf., 7, 315-326.
    • (2008) Comput. Syst. Bioinformatics Conf. , vol.7 , pp. 315-326
    • Smith, A.A.1    Craven, M.2
  • 28
    • 48249137399 scopus 로고    scopus 로고
    • Similarity queries for temporal toxicogenomic expression profiles
    • Smith,A.A. et al. (2008) Similarity queries for temporal toxicogenomic expression profiles. PLoS Comput. Biol., 4, e1000116.
    • (2008) PLoS Comput. Biol. , vol.4
    • Smith, A.A.1
  • 29
    • 66349094090 scopus 로고    scopus 로고
    • Clustered alignments of gene-expression time series data
    • Smith,A.A. et al. (2009) Clustered alignments of gene-expression time series data. Bioinformatics, 25, i119-i127.
    • (2009) Bioinformatics , vol.25
    • Smith, A.A.1
  • 30
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Spellman et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273-3297.
    • (1998) Mol. Biol. Cell. , vol.9 , pp. 3273-3297
    • Spellman, X.X.X.1
  • 31
    • 2442526837 scopus 로고    scopus 로고
    • Just-in-time transcription program in metabolic pathways
    • Zaslaver,A. et al. (2004) Just-in-time transcription program in metabolic pathways. Nat. Genet., 36, 486-491.
    • (2004) Nat. Genet. , vol.36 , pp. 486-491
    • Zaslaver, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.