메뉴 건너뛰기




Volumn 23, Issue 14, 2007, Pages 1775-1782

Incorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYESIAN LEARNING; BIOINFORMATICS; CANCER SCREENING; CLASSIFIER; DIAGNOSTIC ACCURACY; FEMALE; GENE EXPRESSION; GENE IDENTIFICATION; HUMAN; MAJOR CLINICAL STUDY; MICROARRAY ANALYSIS; PRIORITY JOURNAL; REGRESSION ANALYSIS; STATISTICAL DISTRIBUTION;

EID: 34547887978     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btm234     Document Type: Article
Times cited : (59)

References (35)
  • 1
    • 21444442035 scopus 로고    scopus 로고
    • Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information
    • Al-Shahrour,F. et al. (2005) Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics, 21, 2988-2993.
    • (2005) Bioinformatics , vol.21 , pp. 2988-2993
    • Al-Shahrour, F.1
  • 2
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise,C. and McLachlan,G.J. (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS, 99, 6562-6566.
    • (2002) PNAS , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 3
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
    • Ashburner,M. et al. (2000) Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 4
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman,L. (1995) Better subset regression using the nonnegative garrote. Technometrics, 37, 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman,L. (2001) Random forests. Mach. Learn., 45, 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 6
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclass
    • Bhattacharjee,A. et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclass. Proc. Natl Acad. Sci. USA, 98, 13790-13795.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 7
    • 33745603747 scopus 로고    scopus 로고
    • Identifying gene expression changes in breast cancer that distinguish early and late relapse among uncured patients
    • Broct,P. et al. (2006) Identifying gene expression changes in breast cancer that distinguish early and late relapse among uncured patients. Bioinformatics, 22, 1477-1485.
    • (2006) Bioinformatics , vol.22 , pp. 1477-1485
    • Broct, P.1
  • 8
    • 0033248624 scopus 로고    scopus 로고
    • Adaptive wavelet estimation: A block thresholding and oracle inequality approach
    • Cai,T. (1999) Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Ann. of Stat. 27, 898-924.
    • (1999) Ann. of Stat , vol.27 , pp. 898-924
    • Cai, T.1
  • 9
    • 3142749026 scopus 로고    scopus 로고
    • A knowledge-based clustering algorithm driven by gene ontology
    • Cheng,J. et al. (2004) A knowledge-based clustering algorithm driven by gene ontology. J. Biopharm. Stat., 14, 687-700.
    • (2004) J. Biopharm. Stat , vol.14 , pp. 687-700
    • Cheng, J.1
  • 10
    • 27944493276 scopus 로고    scopus 로고
    • Classification of microarrays to nearest centroids
    • Dabney,A.R. (2005) Classification of microarrays to nearest centroids. Bioinformatics, 21, 4148-4154.
    • (2005) Bioinformatics , vol.21 , pp. 4148-4154
    • Dabney, A.R.1
  • 11
    • 33750946376 scopus 로고    scopus 로고
    • Functional interpretation of microarray experiments
    • Dopazo,J. (2006) Functional interpretation of microarray experiments. OMICS: J. Integr. Biol., 10, 398-410.
    • (2006) OMICS: J. Integr. Biol , vol.10 , pp. 398-410
    • Dopazo, J.1
  • 13
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub,T.R. et al. (1999) Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 14
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui,J. and Li,H. (2005) Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics, 21, 3001-3008.
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 16
    • 0242559063 scopus 로고    scopus 로고
    • Linear regression and two-class classification with gene expression data
    • Huang,X. and Pan,W. (2003) Linear regression and two-class classification with gene expression data. Bioinformatics, 19 2072-2078.
    • (2003) Bioinformatics , vol.19 , pp. 2072-2078
    • Huang, X.1    Pan, W.2
  • 17
    • 0038244058 scopus 로고    scopus 로고
    • Gene expression predictors of breast cancer outcomes
    • Huang,E. et al. (2003) Gene expression predictors of breast cancer outcomes. Lancet, 361, 1590-1596.
    • (2003) Lancet , vol.361 , pp. 1590-1596
    • Huang, E.1
  • 18
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • Huang,D. and Pan, W. (2006) Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics, 22, 1259-1268.
    • (2006) Bioinformatics , vol.22 , pp. 1259-1268
    • Huang, D.1    Pan, W.2
  • 19
    • 0003067660 scopus 로고    scopus 로고
    • Toward pathway engineering: A new database of genetic and molecular pathway
    • Kanehisa, M. (1996) Toward pathway engineering: A new database of genetic and molecular pathway. Sci. Technol. Japan, 59, 34-38.
    • (1996) Sci. Technol. Japan , vol.59 , pp. 34-38
    • Kanehisa, M.1
  • 20
    • 18744414232 scopus 로고    scopus 로고
    • Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data
    • Lottaz,C. and Spang,R. (2005) Molecular decomposition of complex clinical phenotypes using biologically structured analysis of microarray data. Bioinformatics, 21, 1971-1978.
    • (2005) Bioinformatics , vol.21 , pp. 1971-1978
    • Lottaz, C.1    Spang, R.2
  • 21
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gone expression data
    • Nguyen,D.V. and Rocke,D.M. (2002) Tumor classification by partial least squares using microarray gone expression data. Bioinformatics, 18, 39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 22
    • 21844461828 scopus 로고    scopus 로고
    • Incorporating biological information as a prior in an empirical Bayes approach to analyzing microarray data
    • Article
    • Pan,W. (2005) Incorporating biological information as a prior in an empirical Bayes approach to analyzing microarray data. Stat. Appl. Genet. Mol. Biol., 4, Article 12.
    • (2005) Stat. Appl. Genet. Mol. Biol , vol.4 , pp. 12
    • Pan, W.1
  • 23
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    • Pan,W. (2006) Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics, 22, 795-801.
    • (2006) Bioinformatics , vol.22 , pp. 795-801
    • Pan, W.1
  • 24
    • 33747841010 scopus 로고    scopus 로고
    • Pathway analysis using random forests classification and regression
    • Pang, W. et al. (2006) Pathway analysis using random forests classification and regression.Bioinformatics, 22, 2028-2036.
    • (2006) Bioinformatics , vol.22 , pp. 2028-2036
    • Pang, W.1
  • 25
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh, D. et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1, 203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 26
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani,R. (1996) Regression shrinkage and selection via the LASSO. J. R. Stat. Soc., B, 58, 267-288.
    • (1996) J. R. Stat. Soc., B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani,R., Hastie,R., Narasimhan,B. and Chu,G. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl Acad. Sci. USA, 99, 6567-4572.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6567-4572
    • Tibshirani, R.1    Hastie, R.2    Narasimhan, B.3    Chu, G.4
  • 28
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids with applications to DNA Microarrays
    • Tibshirani,R., Hastie,T., Narasimhan,B. and Chu,G. (2003) Class prediction by nearest shrunken centroids with applications to DNA Microarrays. Stat. Sci., 18, 104-117.
    • (2003) Stat. Sci , vol.18 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 30
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
    • Wang,Y. et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365, 671-679.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1
  • 31
    • 34147120136 scopus 로고    scopus 로고
    • Wei and Li (2007). Biostatistics, 8, 265-284.
    • (2007) Biostatistics , vol.8 , pp. 265-284
    • Wei1    Li2
  • 32
    • 0035881732 scopus 로고    scopus 로고
    • Analysis of gene expression identifies candidate markets and pharmacological targets in prostate cancer
    • Welsh,J.B. et al. (2001) Analysis of gene expression identifies candidate markets and pharmacological targets in prostate cancer. Cancer Res. 61, 5974-5978.
    • (2001) Cancer Res , vol.61 , pp. 5974-5978
    • Welsh, J.B.1
  • 33
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • Krishnaiaah,PR, ed, Academic Press, New York, pp
    • Wold,H. (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiaah,PR. (ed.) Multivariate Analysis. Academic Press, New York, pp. 391-420.
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 34
    • 33847364905 scopus 로고    scopus 로고
    • On the non-negative garrotte estimator
    • Yuan,M., and Lin,Y. (2007) On the non-negative garrotte estimator. J. R. Stat. Soc., B, 69, 143-161.
    • (2007) J. R. Stat. Soc., B , vol.69 , pp. 143-161
    • Yuan, M.1    Lin, Y.2
  • 35
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou,H. (2006) The adaptive lasso and its oracle properties. JASA, 101, 1418-1429.
    • (2006) JASA , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.