메뉴 건너뛰기




Volumn 74, Issue 9, 2011, Pages 1478-1484

Kernel-view based discriminant approach for embedded feature extraction in high-dimensional space

Author keywords

Curse of dimensionality; Dimensionality reduction; Feature extraction; Kernel analysis; Local discriminant analysis

Indexed keywords

CLUSTERING ALGORITHMS; DISCRIMINANT ANALYSIS; EXTRACTION; FEATURE EXTRACTION; LEARNING ALGORITHMS;

EID: 79953044619     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.01.004     Document Type: Article
Times cited : (6)

References (33)
  • 1
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • Turk M., Pentland A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3(1):71-86.
    • (1991) J. Cogn. Neurosci. , vol.3 , Issue.1 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 3
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. fisherfaces: recognition using class specific linear projection
    • Belhumeur P., Hespanha J., Kriegman D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19(7):711-720.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.1    Hespanha, J.2    Kriegman, D.3
  • 4
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel Eigenvalue problem
    • Schölkopf B., Smola A., Müller K.R. Nonlinear component analysis as a kernel Eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 5
    • 0033337021 scopus 로고    scopus 로고
    • Fisher discriminant analysis with kernels, in: Proceedings of the IEEE International Workshop on Neural Networks for Signal Processing
    • S. Mika, G. Ratsch, J. Weston, B. Schölkopf, K. Muller, Fisher discriminant analysis with kernels, in: Proceedings of the IEEE International Workshop on Neural Networks for Signal Processing, 1999, pp. 41-48.
    • (1999) , pp. 41-48
    • Mika, S.1    Ratsch, G.2    Weston, J.3    Schölkopf, B.4    Muller, K.5
  • 6
    • 0036195207 scopus 로고    scopus 로고
    • Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm
    • Billings S.A., Lee K.L. Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural Networks 2002, 15(2):263-270.
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 263-270
    • Billings, S.A.1    Lee, K.L.2
  • 7
    • 67349121326 scopus 로고    scopus 로고
    • Sparse multinomial kernel discriminant analysis (sMKDA)
    • Harrison R.F., Pasupa K. Sparse multinomial kernel discriminant analysis (sMKDA). Pattern Recognition 2009, 42(9):1795-1802.
    • (2009) Pattern Recognition , vol.42 , Issue.9 , pp. 1795-1802
    • Harrison, R.F.1    Pasupa, K.2
  • 8
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., Silva V., Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290(5500):2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 9
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(5500):2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 10
    • 79953035223 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering, in: Neural Information Processing Systems
    • M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: Neural Information Processing Systems, 2001, pp. 585-591.
    • (2001) , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 14
    • 39449104854 scopus 로고    scopus 로고
    • Classification and feature extraction by simplexization
    • Fu Y., Yan S., Huang T.S. Classification and feature extraction by simplexization. IEEE Trans. Inf. Forens. Secur. 2008, 3(1):91-100.
    • (2008) IEEE Trans. Inf. Forens. Secur. , vol.3 , Issue.1 , pp. 91-100
    • Fu, Y.1    Yan, S.2    Huang, T.S.3
  • 15
    • 77956058043 scopus 로고    scopus 로고
    • Marginal discriminant projections: an adaptable marginal discriminant approach to feature reduction and extraction
    • Cheng M., Fang B., Wen J., Tang Y.Y. Marginal discriminant projections: an adaptable marginal discriminant approach to feature reduction and extraction. Pattern Recognition Lett. 2010, 31(13):1965-1974.
    • (2010) Pattern Recognition Lett. , vol.31 , Issue.13 , pp. 1965-1974
    • Cheng, M.1    Fang, B.2    Wen, J.3    Tang, Y.Y.4
  • 16
    • 77955850136 scopus 로고    scopus 로고
    • Incremental embedding and learning in the local discriminant subspace with application to face recognition
    • Cheng M., Fang B., Tang Y.Y., Zhang T., Wen J. Incremental embedding and learning in the local discriminant subspace with application to face recognition. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 2010, 40(5):580-591.
    • (2010) IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. , vol.40 , Issue.5 , pp. 580-591
    • Cheng, M.1    Fang, B.2    Tang, Y.Y.3    Zhang, T.4    Wen, J.5
  • 17
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Li H.F., Jiang T., Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Networks 2006, 17(1):157-165.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.1 , pp. 157-165
    • Li, H.F.1    Jiang, T.2    Zhang, K.3
  • 18
    • 79953064412 scopus 로고    scopus 로고
    • UCI machine learning repository, 〈〉
    • A. Asuncion, D. Newman, UCI machine learning repository, 〈〉, 2007. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 19
    • 0036487285 scopus 로고    scopus 로고
    • Why can LDA be performed in PCA transformed space?
    • Yang J., Yang J.y. Why can LDA be performed in PCA transformed space?. Pattern Recognition 2003, 36(2):563-566.
    • (2003) Pattern Recognition , vol.36 , Issue.2 , pp. 563-566
    • Yang, J.1    Yang, J.2
  • 21
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G., Anouar F. Generalized discriminant analysis using a kernel approach. Neural Comput. 2000, 12(10):2385-2404.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 22
    • 79953031958 scopus 로고    scopus 로고
    • Matrix Computations, third ed., Johns Hopkins University Press, Baltimore, MD
    • G.H. Golub, C.F.V. Loan, Matrix Computations, third ed., Johns Hopkins University Press, Baltimore, MD, 1996.
    • (1996)
    • Golub, G.H.1    Loan, C.F.V.2
  • 23
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • Ye J. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J. Mach. Learn. Res. 2005, 6:483-502.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 483-502
    • Ye, J.1
  • 24
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high dimensional data-with application to face recognition
    • Yu H., Yang J. A direct LDA algorithm for high dimensional data-with application to face recognition. Pattern Recognition 2001, 34(10):2067-2070.
    • (2001) Pattern Recognition , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 25
    • 54349111811 scopus 로고    scopus 로고
    • Generalized linear discriminant analysis: a unified framework and efficient model selection
    • Ji S., Ye J. Generalized linear discriminant analysis: a unified framework and efficient model selection. IEEE Trans. Neural Networks 2008, 19(10):1768-1782.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.10 , pp. 1768-1782
    • Ji, S.1    Ye, J.2
  • 27
    • 70350742991 scopus 로고    scopus 로고
    • Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion
    • Fang B., Cheng M., Tang Y.Y., He G. Improving the discriminant ability of local margin based learning method by incorporating the global between-class separability criterion. Neurocomputing 2009, 73(1-3):356-541.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 356-541
    • Fang, B.1    Cheng, M.2    Tang, Y.Y.3    He, G.4
  • 28
    • 0035887459 scopus 로고    scopus 로고
    • Molecular classification of human carcinomas by use of gene expression signatures
    • Su A.I., et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res. 2001, 61(20):7388-7393.
    • (2001) Cancer Res. , vol.61 , Issue.20 , pp. 7388-7393
    • Su, A.I.1
  • 29
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • Ramaswamy S., et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. 2001, 98(26):15149-15154.
    • (2001) Proc. Natl. Acad. Sci. , vol.98 , Issue.26 , pp. 15149-15154
    • Ramaswamy, S.1
  • 31
    • 79953039893 scopus 로고    scopus 로고
    • The AR face database Technical Report, CVC Technical Report #24, Purdue University, West Lafayette
    • A.M. Martinez, R. Benavente, The AR face database Technical Report, CVC Technical Report #24, Purdue University, West Lafayette, 1998.
    • (1998)
    • Martinez, A.M.1    Benavente, R.2
  • 32
    • 79953030209 scopus 로고    scopus 로고
    • The Olivetti & Oracle Research Laboratory Face Database of Faces [Online]. Available:
    • O.R. Laboratory, The Olivetti & Oracle Research Laboratory Face Database of Faces [Online]. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
    • Laboratory, O.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.